DOI QR코드

DOI QR Code

Losartan Inhibits Vascular Smooth Muscle Cell Proliferation through Activation of AMP-Activated Protein Kinase

  • Kim, Jung-Eun (Department of Pharmacology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University) ;
  • Choi, Hyoung-Chul (Department of Pharmacology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University)
  • Received : 2010.08.17
  • Accepted : 2010.09.30
  • Published : 2010.10.31

Abstract

Losartan is a selective angiotensin II (Ang II) type 1 ($AT_1$) receptor antagonist which inhibits vascular smooth muscle cells (VSMCs) contraction and proliferation. We hypothesized that losartan may prevent cell proliferation by activating AMP-activated protein kinase (AMPK) in VSMCs. VSMCs were treated with various concentrations of losartan. AMPK activation was measured by Western blot analysis and cell proliferation was measured by MTT assay and flowcytometry. Losartan dose- and time-dependently increased the phosphorylation of AMPK and its downstream target, acetyl-CoA carboxylase (ACC) in VSMCs. Losartan also significantly decreased the Ang II- or 15% FBS-induced VSMC proliferation by inhibiting the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. Compound C, a specific inhibitor of AMPK, or AMPK siRNA blocked the losartan-induced inhibition of cell proliferation and the $G_0/G_1$ cell cycle arrest. These data suggest that losartan-induced AMPK activation might attenuate Ang II-induced VSMC proliferation through the inhibition of cell cycle progression.

Keywords

References

  1. Ross R. Cell biology of atherosclerosis. Annu Rev Physiol. 1995;57:791-804. https://doi.org/10.1146/annurev.ph.57.030195.004043
  2. Hardie DG, Scott JW, Pan DA, Hudson ER. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 2003;546:113-120. https://doi.org/10.1016/S0014-5793(03)00560-X
  3. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996;271:27879-27887. https://doi.org/10.1074/jbc.271.44.27879
  4. Hardie DG. New roles for the LKB1-->AMPK pathway. Curr Opin Cell Biol. 2005;17:167-173. https://doi.org/10.1016/j.ceb.2005.01.006
  5. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D. $Ca^{2+}$/calmodulin-dependent protein kinase kinase-beta acts upstream of AMPactivated protein kinase in mammalian cells. Cell Metab. 2005;2:21-33. https://doi.org/10.1016/j.cmet.2005.06.005
  6. Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol. 1997;273:E1107-E1112.
  7. Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. 2002;277:23977-23980. https://doi.org/10.1074/jbc.C200171200
  8. Lee WJ, Lee IK, Kim HS, Kim YM, Koh EH, Won JC, Han SM, Kim MS, Jo I, Oh GT, Park IS, Youn JH, Park SW, Lee KU, Park JY. Alpha-lipoic acid prevents endothelial dysfunction in obese rats via activation of AMP-activated protein kinase. Arterioscler Thromb Vasc Biol. 2005;25:2488-2494. https://doi.org/10.1161/01.ATV.0000190667.33224.4c
  9. Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren TJ, Cohen RA. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006;55:2180-2191. https://doi.org/10.2337/db05-1188
  10. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:1288-1295. https://doi.org/10.1038/nm788
  11. Nagata D, Takeda R, Sata M, Satonaka H, Suzuki E, Nagano T, Hirata Y. AMP-activated protein kinase inhibits angiotensin II-stimulated vascular smooth muscle cell proliferation. Circulation. 2004;110:444-451. https://doi.org/10.1161/01.CIR.0000136025.96811.76
  12. Asmar R. Targeting effective blood pressure control with angiotensin receptor blockers. Int J Clin Pract. 2006;60:315-320. https://doi.org/10.1111/j.1368-5031.2006.00784.x
  13. Nozawa Y, Matsuura N, Miyake H, Yamada S, Kimura R. Effects of TH-142177 on angiotensin II-induced proliferation, migration and intracellular signaling in vascular smooth muscle cells and on neointimal thickening after balloon injury. Life Sci. 1999;64:2061-2070. https://doi.org/10.1016/S0024-3205(99)00153-8
  14. Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest. 1995;95:651-657. https://doi.org/10.1172/JCI117710
  15. Bunkenburg B, Amelsvoort T, Rogg H, Wood JM. Receptor-mediated effects of angiotensin II on growth of vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension. 1992;20:746-754. https://doi.org/10.1161/01.HYP.20.6.746
  16. Makita S, Nakamura M, Yoshida H, Hiramori K. Effect of angiotensin II receptor blocker on angiotensin II stimulated DNA synthesis of cultured human aortic smooth muscle cells. Life Sci. 1995;56:PL383-PL388. https://doi.org/10.1016/0024-3205(95)98582-Z
  17. Herbert JM, Delisee C, Dol F, Schaeffer P, Cazaubon C, Nisato D, Chatelain P. Effect of SR 47436, a novel angiotensin II AT1 receptor antagonist, on human vascular smooth muscle cells in vitro. Eur J Pharmacol. 1994;251:143-150. https://doi.org/10.1016/0014-2999(94)90394-8
  18. Okada K, Hirano T, Ran J, Adachi M. Olmesartan medoxomil, an angiotensin II receptor blocker ameliorates insulin resistance and decreases triglyceride production in fructose-fed rats. Hypertens Res. 2004;27:293-299. https://doi.org/10.1291/hypres.27.293
  19. Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension. 2004;43:993-1002. https://doi.org/10.1161/01.HYP.0000123072.34629.57
  20. Turnbull F. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362:1527-1535. https://doi.org/10.1016/S0140-6736(03)14739-3
  21. Richey JM, Ader M, Moore D, Bergman RN. Angiotensin II induces insulin resistance independent of changes in interstitial insulin. Am J Physiol. 1999;277:E920-E926.
  22. Ogihara T, Asano T, Ando K, Chiba Y, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Katagiri H, Fukushima Y, Kikuchi M, Noguchi N, Aburatani H, Komuro I, Fujita T. Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension. 2002;40:872-879. https://doi.org/10.1161/01.HYP.0000040262.48405.A8
  23. Umeda M, Kanda T, Murakami M. Effects of angiotensin II receptor antagonists on insulin resistance syndrome and leptin in sucrose-fed spontaneously hypertensive rats. Hypertens. Res. 2003;26:485-492. https://doi.org/10.1291/hypres.26.485
  24. Henriksen EJ, Jacob S, Kinnick TR, Teachey MK, Krekler M. Selective angiotensin II receptor receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension. 2001;38:884-890. https://doi.org/10.1161/hy1101.092970
  25. Fujimoto M, Masuzaki H, Tanaka T, Yasue S, Tomita T, Okazawa K, Fujikura J, Chusho H, Ebihara K, Hayashi T, Hosoda K, Nakao K. An angiotensin II AT1 receptor antagonist, telmisartan augments glucose uptake and GLUT4 protein expression in 3T3-L1 adipocytes. FEBS Lett. 2004;576:492-497. https://doi.org/10.1016/j.febslet.2004.09.027
  26. Furuhashi M, Ura N, Higashiura K, Murakami H, Tanaka M, Moniwa N, Yoshida D, Shimamoto K. Blockade of the renin-angiotensin system increases adiponectin concentrations in patients with essential hypertension. Hypertension. 2003;42:76-81. https://doi.org/10.1161/01.HYP.0000078490.59735.6E
  27. Hardie DG. The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci. 2004;117:5479-5487. https://doi.org/10.1242/jcs.01540
  28. Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG 4th, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem. 2004;279:43940-43951. https://doi.org/10.1074/jbc.M404421200
  29. Yamauchi T, Hara K, Kubota N, Terauchi Y, Tobe K, Froguel P, Nagai R, Kadowaki T. Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Curr Drug Targets Immune Endocr Metabol Disord. 2003;3:243-254. https://doi.org/10.2174/1568008033340090
  30. Choi HC, Song P, Xie Z, Wu Y, Xu J, Zhang M, Dong Y, Wang S, Lau K, Zou MH. Reactive nitrogen species is required for the activation of the AMP-activated protein kinase by statin in vivo. J Biol Chem. 2008;283:20186-20197. https://doi.org/10.1074/jbc.M803020200
  31. Motoshima H, Goldstein BJ, Igata M, Araki E. AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol. 2006;574:63-71. https://doi.org/10.1113/jphysiol.2006.108324
  32. Igata M, Motoshima H, Tsuruzoe K, Kojima K, Matsumura T, Kondo T, Taguchi T, Nakamaru K, Yano M, Kukidome D, Matsumoto K, Toyonaga T, Asano T, Nishikawa T, Araki E. Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circ Res. 2005;97:837-844. https://doi.org/10.1161/01.RES.0000185823.73556.06

Cited by

  1. Inhibition of the AMP-Activated Protein Kinase-α2 Accentuates Agonist-Induced Vascular Smooth Muscle Contraction and High Blood Pressure in Mice vol.57, pp.5, 2010, https://doi.org/10.1161/hypertensionaha.110.168906
  2. Suppression of AMPK Activation via S485 Phosphorylation by IGF-I during Hyperglycemia Is Mediated by AKT Activation in Vascular Smooth Muscle Cells vol.152, pp.8, 2010, https://doi.org/10.1210/en.2011-0155
  3. Involvement of profilin-1 in angiotensin II-induced vascular smooth muscle cell proliferation vol.55, pp.1, 2010, https://doi.org/10.1016/j.vph.2011.04.003
  4. AMPK induces vascular smooth muscle cell senescence via LKB1 dependent pathway vol.413, pp.1, 2010, https://doi.org/10.1016/j.bbrc.2011.08.071
  5. The Role of TRP Proteins in Mast Cells vol.3, pp.None, 2012, https://doi.org/10.3389/fimmu.2012.00150
  6. AMP-activated protein kinase Activating Agent and Its Implication vol.27, pp.2, 2010, https://doi.org/10.3803/enm.2012.27.2.109
  7. Nifedipine inhibits vascular smooth muscle cell proliferation and reactive oxygen species production through AMP-activated protein kinase signaling pathway vol.56, pp.1, 2012, https://doi.org/10.1016/j.vph.2011.06.001
  8. AMP-activated protein kinase and the control of smooth muscle cell hyperproliferation in vascular disease vol.56, pp.1, 2010, https://doi.org/10.1016/j.vph.2011.10.003
  9. Monocyte chemoattractant protein-1 mediates angiotensin II-induced vascular smooth muscle cell proliferation via SAPK/JNK and ERK1/2 vol.366, pp.1, 2010, https://doi.org/10.1007/s11010-012-1315-x
  10. Anti-Proliferative Effect of an Aqueous Extract of Prunella vulgaris in Vascular Smooth Muscle Cells vol.2013, pp.None, 2010, https://doi.org/10.1155/2013/936463
  11. Sodium Tanshinone IIA Silate Inhibits High Glucose-Induced Vascular Smooth Muscle Cell Proliferation and Migration through Activation of AMP-Activated Protein Kinase vol.9, pp.4, 2010, https://doi.org/10.1371/journal.pone.0094957
  12. Thymoquinone Inhibits Angiotensin II-Induced Proliferation and Migration of Vascular Smooth Muscle Cells Through the AMPK/PPARγ/PGC-1α Pathway vol.35, pp.8, 2010, https://doi.org/10.1089/dna.2016.3262
  13. IOX1, a JMJD2A inhibitor, suppresses the proliferation and migration of vascular smooth muscle cells induced by angiotensin II by regulating the expression of cell cycle-related proteins vol.37, pp.1, 2010, https://doi.org/10.3892/ijmm.2015.2393
  14. AMP-Activated Protein Kinase : An Ubiquitous Signaling Pathway With Key Roles in the Cardiovascular System vol.120, pp.11, 2010, https://doi.org/10.1161/circresaha.117.309633
  15. Angiotensin II Receptor Type 1 Antagonists Modulate Vascular Smooth Muscle Cell Proliferation and Migration via AMPK/mTOR vol.143, pp.1, 2010, https://doi.org/10.1159/000500038
  16. Effect of Losartan and Fish Oil on Plasma IL-6 and Mobility in Older Persons. The ENRGISE Pilot Randomized Clinical Trial vol.74, pp.10, 2010, https://doi.org/10.1093/gerona/gly277
  17. Calcilytic NPS2143 promotes proliferation and inhibits apoptosis of spontaneously hypertensive rat vascular smooth muscle cells via activation of the renin-angiotensin system vol.20, pp.2, 2010, https://doi.org/10.3892/etm.2020.8759
  18. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? vol.10, pp.2, 2021, https://doi.org/10.3390/cells10020302
  19. Angiotensin II upregulates endothelin receptors through the adenosine monophosphate-activated protein kinase/sirtuin 1 pathway in vascular smooth muscle cells vol.73, pp.12, 2021, https://doi.org/10.1093/jpp/rgab137
  20. Inducing Energetic Switching Using Klotho Improves Vascular Smooth Muscle Cell Phenotype vol.23, pp.1, 2022, https://doi.org/10.3390/ijms23010217