• 제목/요약/키워드: Cyclic tension force

검색결과 29건 처리시간 0.018초

고장력볼트 T-인장이음의 피로거동에 관한 실험적 연구 (An Experimental Study on the Fatigue Behavior of T-Type Tension Joints with High Tension Bolt)

  • 이승용;최준혁
    • 한국강구조학회 논문집
    • /
    • 제28권6호
    • /
    • pp.459-465
    • /
    • 2016
  • 본 연구에서는 인장이음에 대한 반복하중의 영향을 파악하기 위하여 단순 인장이음을 대상으로 피로시험을 수행하였다. 인장이음의 볼트체결에 따른 축력과 작용하중에 의한 축력의 변화를 측정하였고 반복하중에 의한 볼트의 축력과 파괴양상, 이음의 피로강도를 조사하였다. 인장이음의 구조 상세 변수는 플랜지 두께와 고장력 볼트의 직경으로서 이들의 조합에 따라 볼트와 연결부의 강성이 달라지도록 하였다. 피로시험결과, 반복하중을 받는 인장이음의 파괴모드는 EC3에서 제시하고 있는 정적 파괴모드별 극한하중을 이용하여 평가될 수 있었다. 인장이음의 피로강도는 지레작용을 고려하지 않은 EC3(36)의 피로강도보다 상당히 안전측의 결과로 나타났다. 그러나, 지레작용에 의한 부가축력은 볼트 축력의 증가를 일으키기 때문에 피로강도에 대한 신중한 평가가 필요하다.

실험적 당뇨 백서에서 교정력에 의한 치조골의 Cyclic AMP의 변화에 관한 연구 (A STUDY ON THE CYCLIC AMP IN THE ALVEOLAR BONE OF RATS APPLIED BY ORTHODONTIC FORCES IN EXPERIMENTAL DIABETES AND INSULIN TREATMENT)

  • 백일수;손병화
    • 대한치과교정학회지
    • /
    • 제16권2호
    • /
    • pp.53-67
    • /
    • 1986
  • The physical tooth movement by orthodontic force is based upon alveolar bone resorption at compression site and new bone formation at tension site of the alveolar socket. The function of the cyclic AMP is to participate not only in initial action of bone cells by mechanical forces but also in the continuous cellular response leading to bone remodelling. This experiment was performed to clarify the role of cyclic AMP in bone remodelling by mechanical force in the NORMAL group, the DIABETES group and the INSULIN TREATED group. The 72 rats were divided into the NORMAL group, the DIABETES group and the INSULIN TREATED group. The same orthodontic forces were applied to the rats of 3 groups. These rats were treated for periods of time ranging from 1 hour, 1 day, 7 days, 14 days, 21 days and 28 days. The samples of alveolar bones were obtained from compression and tension sites surrounding the tipping teeth from NORMAL, DIABETE and INSULIN TREATED rats. The samples were assayed for cyclic AMP by the cyclic AMP RIA kit. The results were as follows: 1. The cyclic AMP levels of alveolar bone in compression and tension sites showed initial decrease, then increased and .remained elevated by the time consuming. 2. The highest cyclic AMP level showed in the DIABETES group and the lowest level was in the NORMAL group. 3. The cyclic AMP levels in the INSULIN TREATED group was similar with the NORMAL group in control and tension sites, but in the compression sites it was similar with the DIABETES group.

  • PDF

Suppression of tension variations in hydro-pneumatic riser tensioner by using force compensation control

  • Kang, Hooi-Siang;Kim, Moo-Hyun;Bhat Aramanadka, Shankar S.;Kang, Heon-Yong;Lee, Kee-Quen
    • Ocean Systems Engineering
    • /
    • 제7권3호
    • /
    • pp.225-246
    • /
    • 2017
  • Excessive dynamic-tension variations on the top-tensioned risers (TTRs) deteriorate the structural integrity and cause potential safety hazards. This phenomenon has become more remarkable in the development of deep-water fields with harsher environmental loads. The conventional prediction method of tension variations in hydro-pneumatic tensioner (HPT) has the disadvantage to underestimate the magnitude of cyclic loads. The actual excessive dynamic tension variations are larger when considering the viscous frictional fluid effects. In this paper, a suppression method of tension variations in HPT is modeled by incorporating the magneto-rheological (MR) damper and linear-force actuator. The mathematical models of the combined HPT and MR damper are developed and a force-control scheme is introduced to compensate the excessive tension variations on the riser tensioner ring. Numerical simulations and analyses are conducted to evaluate the suppression of tension variations in HPT under both regular- and irregular-wave conditions for a drilling riser of a tensioned-leg platform (TLP). The results show that significant reduction of tension variations can be achieved by introducing the proposed system. This research has provided a theoretical foundation for the HPT tension control and related structural protection.

교정력에 의한 치조골의 cyclic AMP에 관한 연구 (A STUDY ON CYCLIC AMP IN ALVEOLAR BONE TREATED BY ORTHODONTIC FORCES)

  • 안대식;이종흔;양원식
    • 대한치과교정학회지
    • /
    • 제11권1호
    • /
    • pp.7-15
    • /
    • 1981
  • Tooth movement by orthodontic force is based upon alveolar bone resorption at compression site and bone formation at tension site of tooth. The function of cyclic AMP is to participate not only in initial action of bone cells by mechanical forces but also in the continuous cellular response leading to bone remodeling. This experiment was performed to clarify the role of cyclic AMP in bone remodeling by mechanical forces. The orthodontic forces of about 80 gm and 100 gm were applied to the right canines of maxillary and mandibular bone, respectively, in cats, treated for periods of time ranging from one hour to 28 days. Alveolar bones were obtained from compression and tension sites surrounding tipping maxillary and mandibular canines as well as from contralateral control sites. The samples were extracted, boiled and homogenized, and the supernatants were assayed for cyclic AMP by a radioimmunoassay method. The results were as follows: 1. The orthodontic movement of canines was increased to the end of experimental period and the action of orthodontic forces on tooth movement was more effective in maxillary canine. 2. The cyclic AMP levels of alveolar bones in compression and tension sites initially decreased, then increased and remained elevated to the end of experiment. The differences of the cyclic AMP levels between treated sites and non-treated sites were gradually increased. 3. The cyclic AMP levels in treated sites of mandibular alveolar bone was higher than that of maxillary alveolar bone.

  • PDF

Investigating the negative tension stiffening effect of reinforced concrete

  • Zanuy, Carlos
    • Structural Engineering and Mechanics
    • /
    • 제34권2호
    • /
    • pp.189-211
    • /
    • 2010
  • The behaviour of a reinforced concrete tension member is governed by the contribution of concrete between cracks, tension stiffening effect. Under highly repeated loading, this contribution is progressively reduced and the member response approximates that given by the fully cracked member. When focusing on the unloaded state, experiments show deformations larger than those of the naked reinforcement. This has been referred to as negative tension stiffening and is due to the fact that concrete carries compressive stresses along the crack spacing, even thought the tie is subjected to an external tensile force. In this paper a cycle-dependent approach is presented to reproduce the behaviour of the axially loaded tension member, paying attention to the negative tension stiffening contribution. The interaction of cyclic bond degradation and time-dependent effects of concrete is investigated. Finally, some practical diagrams are given to account for the negative tension stiffening effect in reinforced concrete elements.

Partially restrained beam-column weak-axis moment connections of low-rise steel structures

  • Lim, Woo-Young;Lee, Dongkeun;You, Young-Chan
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.663-674
    • /
    • 2020
  • In this study, partially restrained beam-column moment joints in the weak-axis direction were examined using three large-scale specimens subject to cyclic loading in order to assess the seismic resistance of the joints of low-rise steel structures and to propose joint details based on the test results. The influence of different number of bolts on the moment joints was thoroughly investigated. It was found that the flexural capacity of the joints in the direction of weak axis was highly dependent on the number of high-tension bolts. In addition, even though the flexural connections subjected to cyclic loading was perfectly designed in accordance with current design codes, severe failure mode such as block shear failure could occur at beam flange. Therefore, to prevent excessive deformation at bolt holes under cyclic loading conditions, the holes in beam flange need to have larger bearing capacity than the required tensile force. In particular, if the thickness of the connecting plate is larger than that of the beam flange, the bearing capacity of the flange should be checked for structural safety.

Pretension process control based on cable force observation values for prestressed space grid structures

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing
    • Structural Engineering and Mechanics
    • /
    • 제34권6호
    • /
    • pp.739-753
    • /
    • 2010
  • Pointing to the design requirement of prestressed space grid structure being the target cable force, the pretension scheme decision analysis method is studied when there's great difference between structural actual state and the analytical model. Based on recursive formulation of cable forces, the simulative recursive system for pretension process is established from the systematic viewpoint, including four kinds of parameters, i.e., system initial value (structural initial state), system input value (tensioning control force scheme), system state parameters (influence matrix of cable forces), system output value (pretension accomplishment). The system controllability depends on the system state parameters. Based on cable force observation values, the influence matrix for system state parameters can be calculated, making the system controllable. Next, the pretension scheme decision method based on cable force observation values can be formed on the basis of iterative calculation for recursive system. In this way, the tensioning control force scheme that can meet the design requirement when next cyclic supplemental tension finished is obtained. Engineering example analysis results show that the proposed method in this paper can reduce a lot of cyclic tensioning work and meanwhile the design requirement can be met.

전변형과 굽힘을 이용한 초고강도 철강 판재의 반복 거동 측정 (Measurement of Cyclic Behavior of Advanced High Strength Steel Sheets Based on Pre-straining and Bending)

  • 채준열;정재봉;;김지훈
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.41-47
    • /
    • 2017
  • Cyclic behavior of advanced high strength steel sheets was measured using an inverse-optimization approach with pre-straining and bending. First, tensile specimens were pre-strained, and three-point bending was conducted for the pre-strained specimens. By using the inverse finite element optimization, the combined isotropic-kinematic hardening parameters that minimize the error between the measured and predicted bending force-displacement curves. The measured cyclic behavior agreed well with the cyclic behavior measured by sheet tension-compression test, which confirms the validity of the measuring procedure based on inverse optimization.

The effect of biomechanical stimulation on osteoblast differentiation of human jaw periosteum-derived stem cells

  • Lee, Ju-Min;Kim, Min-Gu;Byun, June-Ho;Kim, Gyoo-Cheon;Ro, Jung-Hoon;Hwang, Dae-Seok;Choi, Byul-Bora;Park, Geun-Chul;Kim, Uk-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제39권
    • /
    • pp.7.1-7.9
    • /
    • 2017
  • Background: This study was to investigate the effect of biomechanical stimulation on osteoblast differentiation of human periosteal-derived stem cell using the newly developed bioreactor. Methods: Human periosteal-derived stem cells were harvested from the mandible during the extraction of an impacted third molar. Using the new bioreactor, 4% cyclic equibiaxial tension force (0.5 Hz) was applied for 2 and 8 h on the stem cells and cultured for 3, 7, and 14 days on the osteogenic medium. Biochemical changes of the osteoblasts after the biomechanical stimulation were investigated. No treatment group was referred to as control group. Results: Alkaline phosphatase (ALP) activity and ALP messenger RNA (mRNA) expression level were higher in the strain group than those in the control group. The osteocalcin and osteonectin mRNA expressions were higher in the strain group compared to those in the control group on days 7 and 14. The vascular endothelial growth factor (VEGF) mRNA expression was higher in the strain group in comparison to that in the control group. Concentration of alizarin red S corresponding to calcium content was higher in the strain group than in the control group. Conclusions: The study suggests that cyclic tension force could influence the osteoblast differentiation of periosteal-derived stem cells under optimal stimulation condition and the force could be applicable for tissue engineering.

H/T 와 T/S 볼트 마찰이음의 피로거동 비교·검토 (A Comparison Study for the Fatigue Behavior of H/T and T/S Bolt Friction Joint)

  • 전제상;우상익;이성행;정경섭
    • 한국강구조학회 논문집
    • /
    • 제8권3호통권28호
    • /
    • pp.139-150
    • /
    • 1996
  • H/T(High Tension) bolt is generally being used in joining the members of steel structure. It has some difficulties in management such as an adequate fastening force and a selection of proper instrument for fastening. T/S(Torque Shear Type High Tension) bolt which is more convenient and easier than H/T bolt in quality control has recently been developed. T/S bolts are produced and widely used these days in domestic, but those have not a detail regulation for their on. Those are only being used according to the specification for the H/T bolts. In this study, we tried to confirm the soundness of T/S bolts by the fatigue test of the modified specimens. First, we measured the reduction rate of the initial axial force with time at bolts. Second, we investigated the slip forces of bolts when the test specimen is loaded in tension. Third, we implemented the fatigue tests. During the test, we measured the variation of the axial forces of bolts under the cyclic loading. Finally, we compared and analyzed the fatigue behavior of H/T and T/S bolt, by S-N curve diagrams that are obtained in this study.

  • PDF