• Title/Summary/Keyword: Cyclic oxidation-reduction

Search Result 118, Processing Time 0.022 seconds

Lithium Insertion Behavior of Nanoscopic Co3O4 Prepared with Avian Egg Membrane as a Template

  • Christy, Maria;Jisha, M.R;Kim, Ae-Rhan;Nahm, Kee-Suk;Yoo, Dong-Jin;Suh, E.K.;Kumari, T. Sri Devi;Kumar, T. Prem;Stephan, A. Manuel
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1204-1208
    • /
    • 2011
  • Nanoscopic $Co_3O_4$ particles were prepared using avian egg membrane as a template at $800^{\circ}C$. The prepared materials were subjected to XRD, SEM, TEM and Raman spectroscopic studies. Cyclic voltammetry study shows a single step oxidation and reduction process. Electrochemical lithium insertion behavior of the materials was examined in coin cells of the 2032 configuration. The material showed a discharge capacity 600mAh/g even after 20 cycles.

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (II) - Life Prediction and Failure Mechanism - (냉간 가공된 316L 스테인리스 강의 저주기 피로 거동에 미치는 온도의 영향 (II) - 수명예측 및 파손 기구 -)

  • Hong, Seong-Gu;Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1676-1685
    • /
    • 2003
  • Tensile and low cycle fatigue tests on prior cold worked 3l6L stainless steel were carried out at various temperatures ftom room temperature to 650$^{\circ}C$. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM.

Change in Properties of (Ba1-xLax)Fe3+1-tFe4+tO3-y System Depending on Heat Treatment Conditions

  • Lee, Eun-Seok;Lee, Seo-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.311-315
    • /
    • 2017
  • The perovskite system $(Ba^{2+}{_{1-x}}La^{3+}{_x})Fe^{3+}{_{1-t}}Fe^{4+}{_t}O_{3-y}$ (y = (1 - x --t)/2) having a composition of x = 0.0, 0.1, 0.2, and 0.3 showedean increase in $Fe^{4+}$ mole ratios with an increase in oxygen partial pressure ($N_2{\rightarrow}air{\rightarrow}O_2$), and with an increasefin s, the $Fe^{3+}$ quantity decreased and oxygen content (3-y value) increased. For each N sampls heat-treated in $N_2$ gas, a considerable weight gain, i.e.g a steadynincrease if oxygen content, was observed in the TGA data on the cooling process. The conductivity values at a constant temperature were in the order of $N_2$$O_2$; the respective log ${\sigma}$ values (${\Omega}^{-1}{\cdot}cm^{-1}$) at 323 K of the BL0 sample were -5.75 (BL0-N), -3.39 (BL0-A), and -0.53 (BL0-O). The mixed valencies of $Fe^{3+}$ and $Fe^{4+}$ ions in each sample were also confirmed by both the oxidation curve above 350 mV and the cathodic reduction curve below 200 mV from cyclic voltammetry.

Corrosion of Dental Au-Ag-Cu-Pd Alloys in 0.9 % Sodium Chloride Solution

  • Chiba, Atsushi;Kusayanagi, Yukiharu
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.19-22
    • /
    • 2005
  • Two Au-Ag-Cu-Pd dental casting alloys (Au:12% and 20%) used. The test solutions used 0.9 % NaCl solution (isotonic sodium chloride solution), 0.9 % NaCl solution containing 1 % lactic acid, and 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol $dm^{-3}$ $Na_2S$. The surface of two samples in three sample solutions was not natural discoloration during one year. The alloy containing 12 % gold was easily alloyed and the composition was uniform comparing with the alloy containing 20 % gold. The rest potentials have not a little effect after three months. The kinds of metals could not definitely from the oxidation and reduction waves of metal on the cyclic voltammograms. The dissolutions of gold and palladium were 12 % Au sample in the 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol $dm^{-3}$ $Na_{2}S$. The pH of solution had an affect on dissolution of copper, and sulfur ion had an affect on dissolution of silver. The copper dissolved amount from 20 % gold sample was about 26 times comparing with that of 12 % gold sample in the 0.9 % solution containing 1 % lactic acid. Corrosion products were silver chloride and copper chloride in NaCl solution, and silver sulfide and copper sulfide in NaCl solution containing $Na_{2}S$.

Effects of Casting Method and Rolling on the Corrosion Behaviors of Pb Alloys for a Lead Acid Battery (주조 방식 및 압연에 따른 연축전지용 납 합금 기판의 부식 특성)

  • Oh, KkochNim;Lee, Kyu Hyuk;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • In this study, we examined corrosion behaviors of two types of Pb alloys for a lead acid battery comparatively. One containing 6.6 wt% Sn, 36 mg/kg Bi, and 612.4 mg/kg Ca was prepared by twin-roll continuous casting. The other containing 5.2 wt% Sn, 30.5 mg/kg Ag, and 557 mg/kg Ca was made by twin-belt continuous casting. Potentiodynamic polarization tests were performed to evaluate corrosion resistance. Cyclic voltammetry was done to examine oxidation and reduction reactions occurring on the surface of each alloy in 4.8 M H2SO4 solution. Electrochemical test results implied that the Pb alloy prepared with the twin-belt casting method was less stable than that cast with the twin-roll method. Such results might be due to precipitations formed during the casting process. Rolling did not appear to affect the corrosion behavior of the twin-roll samples with Ag < 10 mg/kg, while it reduced the anodic reaction of Ag on the surface of the twin-belt sample with 30.5 mg/kg Ag.

Solid Circulation and Reaction Characteristics of Mass Produced Particle in a 0.5 MWth Chemical Looping Combustion System (0.5 MWth 급 케미컬루핑 연소시스템에서 대량생산 입자의 고체순환 특성 및 반응 특성)

  • RYU, HO-JUNG;JO, SUNG-HO;LEE, SEUNG-YONG;LEE, DOYEON;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;KIM, JUNGHWAN;BAEK, JEOM-IN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.170-177
    • /
    • 2019
  • Continuous solid circulation test at high temperature and high pressure conditions and batch type reduction-oxidation tests were performed to check feasibility of a 0.5 MWth chemical looping combustion system. Pressure drop profiles were maintained stable during continuous solid circulation up to 16 hours. Therefore, we could conclude that the solid circulation between an air reactor and a fuel reactor could be smooth and stable. The measured fuel conversion and $CO_2$ selectivity were high enough even at high capacity and even after cyclic tests. Therefore, we could expect high reactivity of oxygen carrier at real operation condition.

Electrochemical Behaviors of the Surface-Treated Nickel Hydroxide Powder and Electrolyte Additive LiGH for Ni-MH Batteries (니켈수소전지용 수산화니켈 입자의 표면처리와 전해액 첨가제 LiOH의 전기화학적 거동)

  • Kim, Ho-Sung;Oh, Ik-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.115-119
    • /
    • 2008
  • Single particle of nickel hydroxide and the surface-treated one with cobalt element were performed to review the effect of LiOH additive in alkaline electrolyte for Ni-MH batteries using microelectrode test system. As a result of cyclic voltammetry, the electrochemical behaviors such as the oxidation/reduction and oxygen evolution reaction are clearly observed for a single particle of nickel hydroxide, respectively. Furthermore, the reduction current peak of nickel hydroxide added with LiOH in electrolyte was very low and broad compared with the normal nickel hydroxide without an additive LiOH, which had a bad effect to the crystallization structure of nickel hydroxide. However, it was found that capacity and cycle properties of the nickel hydroxide treated with cobalt greatly increased by the addition of LiOH.

Voltammetric Studies on Some Thiadiazoles and Their Derivatives

  • Maghraby, A. A. El;Abou-Elenien, G. M.;Rateb, N. M;Abdel-Tawab, H. R.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.54-60
    • /
    • 2009
  • The redox characteristics of 2-arylaldehydehydrazono-3-phenyl-5-substituted-2, 3-dihydro-1, 3, 4-thiadiazoles (1a-h) have been investigated in nonaqueous solvents such as 1, 2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (AN), Tetrahydrofuran (THF), and dimethylsulfoxide (DMSO) at platinum electrode. Through controlled potential electrolysis, the oxidation and reduction products of the investigated compounds had been separated and indentified. The redox mechanism had been suggested and proved. It had been found that all the investigated compounds were oxidized in two irreversible one-electron processes following the well-known pattern of The EC-mechanism; the first electron loss gives the corresponding cation-radical which is followed by proton removal from the ortho-position in the N-phenyl ring forming the radical. The obtained radical undergoes a second electron uptake from the nitrogen in the N = C group forming the unstable intermediate (di-radical cation) which undergoes ring closure forming the corresponding cation. The formed cation was stabilized in solution through its combination with a perchlorate anion from the medium. On the other hand, these compounds are reduced in a single two-electron process or in a successive two one-electron processes following the well known pattern of the EEC-mechanism according to the nature of the substituent; the first one gives the anion-radical followed by a second electron reduction to give the dianion which is basic enough to abstract protons from the media to saturate the (C = O) bond.

Electrochemical Behavior of a Nickel Hydroxide Particle for Ni-MH Battery by Microelectrode (마이크로전극에 의한 니켈수소전지용 수산화니켈 입자의 전기화학적 거동)

  • Kim, Ho-Sung;Oh, Ik-Hyun;Lee, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.145-149
    • /
    • 2007
  • Electrochemical studies were performed for a single particle of nickel hydroxide for the cathode of Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and electrochemical experiments were performed. As a result of cyclic voltammetry, the oxidation/reduction and oxygen evolution reaction (OER) are clearly separated for a single particle. The total cathodic charge (Qred) is practically constant for the scan rate investigated, indicating that the whole particle has reacted. The total anodic charge(Qox) was larger than that of reduction reaction, and the magnitude of oxygen evolution taking place as a side reaction was enhanced at lower scan rates. As a result of galvanostatic charge and discharge measurement, the discharge capacity of single particle was found to be 250 mAh/g, value being very close to the theoretical capacity (289 mAh/g). The apparent proton diffusion coefficient(Dapp) using potential step method inside the nickel hydroxide was found to range within $3{\sim}4{\times}10^{-9}\;cm^2/s$.

Preparation of Uniform Porous Carbon from Mesophase Pitch and Its Characteristics of Catalyst Support for the Direct Methanol Fuel Cell (메조페이스 핏치로부터 균질한 다공성 탄소 제조 및 이를 이용한 직접 메탄올 연료전지의 촉매 담지체 특성)

  • Nam, Ki-Don;Kim, Tae-Jin;Kim, Sang-Kyung;Lee, Byoung-Rok;Peck, Dong-Hyun;Ryu, Seung-Kon;Jung, Doo-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.223-228
    • /
    • 2006
  • Pore-size controlled porous carbons for the catalyst supports of the direct methanol fuel cell were prepared from the mesophase pitch by using the silica spheres with different sizes. Pitch solution in THF and spheres were mixed, carbonized and etched by 5 M NaOH to make porous carbon. Specific surface area of the porous carbons was $14.7{\sim}87.7m^2/g$ and average pore diameter was 50~550 nm which were dependent on the size of silica spheres. Aqueous reduction method was used to load 60 wt% PtRu on the prepared porous carbon supports. The electro-oxidation activity of the supported 60 wt% Pt-Ru catalysts was measured by cyclic voltammetry and unit cell test. For the 60 wt% Pt-Ru/porous carbon synthesized by 50 nm silica, current density value in the cyclic voltammetry test was $123mA/cm^2$ at 0.4 V and peak power density in the unit cell test were 105 and $162mW/cm^2$ under oxygen at 60 and $80^{\circ}C$, respectively.