• Title/Summary/Keyword: Cyclic Lipopeptide

Search Result 5, Processing Time 0.017 seconds

Characterization of an Antibiotic Produced by Bacillus subtilis JW-1 that Suppresses Ralstonia solanacearum

  • Kwon, Jae Won;Kim, Shin Duk
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.13-18
    • /
    • 2014
  • Bacillus subtilis JW-1 was isolated from rhizosphere soil as a potential biocontrol agent of bacterial wilt caused by Ralstonia solanacearum. Seed treatment followed by a soil drench application with this strain resulted in >80% reduction in bacterial wilt disease compared with that in the untreated control under greenhouse conditions. The antibacterial compound produced by strain JW-1 was purified by bioactivity-guided fractionation. Based on mass spectroscopy and nuclear magnetic resonance spectral data ($^1H$, $^{13}C$, $^1H-^1H$ correlation spectroscopies, rotating frame nuclear Overhauser effect spectroscopy, and heteronuclear multiple-bond correlation spectroscopy), the structure of this compound was elucidated as a cyclic lipopeptide composed of a heptapeptide (Gln-Leu-Leu-Val-Asp-Leu-Leu) bonded to a ${\beta}$-hydroxy-iso-hexadecanoic acid arranged in a lactone ring system.

Biological and Physico-chemical Properties of Antifungal Cyclic Lipopeptides Produced by Pseudomonas cepacia Strains (Pseudomonas cepacia 균주가 생산하는 항진균성 Cyclic Lipopeptide의 생물학적 및 물리 화학적 특성)

  • Kim, Sung-Ho;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.24 no.4 s.79
    • /
    • pp.310-321
    • /
    • 1996
  • Five strains AF027, AF069, AF2001, AF2011 and SD02 of Pseudomonas cepacia were isolated from soil, and the antifungal cyclic lipopeptides(CLP) i.e, CLP027A, CLP069A, Cepacidine A, CLP2011A and CLP02A were produced from each strains, respectively. Nitrogen and carbon sources in media were proved to be important factors for the production of CLP and among them, polypeptone-S, glucose and fructose were the most effective. It appeared that compounds CLP027A and CLP069A were identical with Cepacidine A and Xylocandine A, respectively. contain aspartic acid as amino acid component, are differentiated from Xylocandine A containing asparagine. Although molecular weight, amino acid composition and UV spectrum of CLP2011A and CLP02A are same with those of Cepacidine A, it is postulated that these compounds are not identical with Cepacidine A when the antifungal spectra and antifungal activity were compared to those of Cepacidine A.

  • PDF

Biological Control Potential of Bacillus amyloliquefaciens KB3 Isolated from the Feces of Allomyrina dichotoma Larvae

  • Nam, Hyo-Song;Yang, Hyun-Ju;Oh, Byung Jun;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.273-280
    • /
    • 2016
  • Most biocontrol agents for plant diseases have been isolated from sources such as soils and plants. As an alternative source, we examined the feces of tertiary larvae of the herbivorous rhino beetle, Allomyrina dichotoma for presence of biocontrol-active microbes. The initial screen was performed to detect antifungal activity against two common fungal plant pathogens. The strain with strongest antifungal activity was identified as Bacillus amyloliquefaciens KB3. The inhibitory activity of this strain correlated with lipopeptide productions, including iturin A and surfactin. Production of these surfactants in the KB3 isolate varied with the culture phase and growth medium used. In planta biocontrol activities of cell-free culture filtrates of KB3 were similar to those of the commercial biocontrol agent, B. subtilis QST-713. These results support the presence of microbes with the potential to inhibit fungal growth, such as plant pathogens, in diverse ecological niches.

Characterization of Bacillus mojavensis KJS-3 for the Promotion of Plant Growth (식물 성장 촉진에 사용에 있어 Bacillus mojavensis KJS-3의 특징)

  • Kim, Kang Min;Liu, Jie;Go, Youn Suk;Kang, Jae Seon
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.910-916
    • /
    • 2015
  • Scientists have recently shown an interest in the characteristics of Bacillus mojavensis strains because of their increasing use in plants as a defense against diseases and mycotoxins. We have shown here that B. mojavensis KJS-3 possesses the typical characteristics of B. mojavensis strains including a strong resistance to high temperatures (≤50℃), tolerance to high salt concentrations (7% NaCl), ethanol tolerance (40% ethanol), and pH range for growth (pH 5-9). B. mojavensis KJS-3 has been used for the production of cyclic lipopeptides including important antifungal substances such as surfactin, iturin, and fengycin. Polymerase chain reaction analysis in this study showed that B. mojavensis KJS-3 can be used for the production of fengycin and the findings of LC-MS/MS analyses suggest that B. mojavensis KJS-3 can be used to produce iturin and surfactin. Antifungal activity analys is confirmed that B. mojavensis KJS-3 has antifungal effects on Botrytis cinerea, Rhizoctonia solani AG-4, Sclerotinia sclerotiorum, and Colletotricum goeosporioides. A microscopy assessment of the roots of wild ginseng plants planted together with B. mojavensis KJS-3 revealed that the roots contained B. mojavensis KJS-3, confirming the bacteria to be a plant growth promoting endophyte (PGPE) which acts against plant diseases and mycotoxins. Our findings lead us to conclude that B. mojavensis KJS-3 can be produced at an industrial level as a microbial pesticide or microbial fertilizer.

Secondary Metabolites Production and Plant Growth Promotion by Pseudomonas chlororaphis and P. aurantiaca Strains Isolated from Cactus, Cotton, and Para Grass

  • Shahid, Izzah;Rizwan, Muhammad;Baig, Deeba Noreen;Saleem, Rahman Shahzaib;Malik, Kauser A.;Mehnaz, Samina
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.480-491
    • /
    • 2017
  • Fluorescent pseudomonads have been isolated from halophytes, mesophytes, and xerophytes of Pakistan. Among these, eight isolates, GS-1, GS-3, GS-4, GS-6, GS-7, FS-2 (cactus), ARS-38 (cotton), and RP-4 (para grass), showed antifungal activity and were selected for detailed study. Based on biochemical tests and 16S rRNA gene sequences, these were identified as strains of P. chlororaphis subsp. chlororaphis and aurantiaca. Secondary metabolites of these strains were analyzed by LC-MS. Phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine, Cyclic Lipopeptide (white line-inducing principle (WLIP)), and lahorenoic acid A were detected in variable amounts in these strains. P. aurantiaca PB-St2 was used as a reference as it is known for the production of these compounds. The phzO and PCA genes were amplified to assure that production of these compounds is not an artifact. Indole acetic acid production was confirmed and quantified by HPLC. HCN and siderophore production by all strains was observed by plate assays. These strains did not solubilize phosphate, but five strains were positive for zinc solubilization. Wheat seedlings were inoculated with these strains to observe their effect on plant growth. P. aurantiaca strains PB-St2 and GS-6 and P. chlororaphis RP-4 significantly increased both root and shoot dry weights, as compared with uninoculated plants. However, P. aurantiaca strains FS-2 and ARS-38 significantly increased root and shoot dry weights, respectively. All strains except PB-St2 and ARS-38 significantly increased the root length. This is the first report of the isolation of P. aurantiaca from cotton and cactus, P. chlororaphis from para grass, WLIP and lahorenoic acid A production by P. chlororaphis, and zinc solubilization by P. chlororaphis and P. aurantiaca.