• Title/Summary/Keyword: Cyclic Boundary Condition

Search Result 29, Processing Time 0.027 seconds

Rigorous dynamic simulation and determination of initial operating conditions for two-bed PSA processes (두 탑 PSA공정의 상세 동적모사 및 초기운전조건 결정)

  • Hwang, Deok-Jae;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1520-1523
    • /
    • 1997
  • A rigorous dynamic simulation was performed in binary gas mixture H$_{2}$/CO (70:30 vol.%) to determinate start-up operating conditions of PSA(Pressure Swing Adsorption) processes. The rigorous dynamic model for the PSA process contains an Ergun equation for expressing the pressure drop in a bed, and valve equations to compute the boundary pressure change of the bed. As the result of the continuous dynamic simulation of 100 operating cyles in various initial conditions, the unsteady-state appeared in the early period and the cyclic steady-state came out about 20th cycle in feed condition and vaccum condition, and 30th cycle in pure H$_{2}$ condition. As time goes by valve equations made change the pressure at each end of the bed in ressurization, countercurrunt-depressurization and pressure equalization steps. The H$_{2}$ purity and the recovery is 99.99% and 86.73% respectively, which is slightly higher than the experimental data. Main contributiion of this study includes supplying fundamental technologies of handling combined variables PSA processes by developing rigorous models.

  • PDF

Computational Modeling of Cyclic Voltammetry on Multi-electron Electrode Reaction using Diffusion Model (확산모델을 이용한 다중전자 전극반응에 대한 순환전위법의 전산모델링)

  • Cho, Ha-Na;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.165-171
    • /
    • 2012
  • Here is implemented MATLAB program to analyze the characteristic curves of cyclic voltammetry which involves the multi-electron electrode reaction considered as key processes in electrochemical systems. For the electrochemical mass-transfer system, Fick's concentration equation subject to semi-infinite diffusion model for the boundary condition was discretized and solved by the explicit finite difference method. The resulting concentration values were converted into currents at each node by using Butler-Volmer equation. Based on the good agreement between the present numerical solution and the existing experimental results, effects of kinetic constants and CV scan rates on the reaction mechanism in multi-electron transfer processes were investigated effectively.

Effects of temperature on the ratcheting behavior of pressurized 90° elbow pipe under force controlled cyclic loading

  • Chen, Xiaohui;Wang, Xingang;Chen, Xu
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.473-485
    • /
    • 2017
  • Ratcheting behavior of $90^{\circ}$ elbow piping subject to internal pressure 20 MPa and reversed bending 20 kN was investigated using experimental method. The maximum ratcheting strain was found in the circumferential direction of intrados. Ratcheting strain at flanks was also very large. Moreover, the effect of temperature on ratcheting strain of $90^{\circ}$ elbow piping was studied through finite element analysis, and the results were compared with room condition ($25^{\circ}$). The results revealed that ratcheting strain of $90^{\circ}$ elbow piping increased with increasing temperature. Ratcheting boundary of $90^{\circ}$ elbow piping was determined by Chaboche model combined with C-TDF method. The results revealed that there was no relationship between the dimensionless form of ratcheting boundary and temperature.

Hysteretic Characteristics and Deformation Modes of Steel Plate Shear Walls According to Aspect Ratios and Width-to-Thickness Ratios (강판 형상비 및 판폭두께비에 따른 강판전단벽의 변형모드 및 이력특성)

  • Shin, Dong-Hyeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.37-45
    • /
    • 2024
  • Steel plate shear walls (SPSWs) have been recognized as an effective seismic-force resisting systems due to their excellent strength and stiffness characteristics. The infill steel plate in a SPSW is constrained by a boundary frame consisting of vertical and horizontal structural members. The main purpose of this study was to investigate deformation modes and hysteretic characteristics of steel plate shear walls (SPSWs) to consider the effects of their aspect ratios and width-to-thicness ratios. The finite element model (FEM) was establish in order to simulate cyclic responses of SPSWs which have the two-side clamped boundary condition and made of conventional steel grade. The stress distribution obtained from the FEA results demonstrated that the principal stresses on steel plate with large thickness-to-width ratio were more uniformly distributed along its horizontal cross section due to the formation of multiple struts.

Experimental Study on the Confining Effects of Various Detailing Methods at Ends of Flexural Shear Walls (전단벽의 양단부 기둥식 보강기법 연구)

  • 김두영;천영수;조순호;최기봉;정하선;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.154-159
    • /
    • 1993
  • To develop the detailing methods at the ends of flexural shear walls. which are satisfying the ductility requirement corresponding to R = 3.5 and capable of improving the consturctibility, tests of ten isolated cantilever shear walls were carried out under the load condition comprising the cyclic lateral and constant vertical loads. major test parameters include the way of detailing and arrangement of transverse reinforcement in the boundary elements at the ends of walls, and placement of vertical reinforcement. From tests, comparable ductile behavior in test specimens incorporating the channel type of open hoops, compared with those incorporating the regular type of closed hoops, was observed.

  • PDF

Thermal-Hydraulic Analysis of A Wire-Spacer Fuel Assembly

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.473-478
    • /
    • 2004
  • This work presents the Thermal Hydraulic analysis has been performed for a 19-pin wire-spacer fuel assembly using three-dimensional Reynolds-averaged Navier-Stokes equations. SST model is used as a turbulence closure. The whole fuel assembly has been analyzed for one period of the wire-spacer using periodic boundary condition at inlet and outlet of the calculation domain. The overall results far a preliminary calculation show a good agreement with the experimental observations. It has been found that the major unidirectional flows are the axial velocity in sub-channels and the peripheral sweeping flows and the velocities are found to be following a cyclic path of period equal to the wire-wrap pitch. The temperature is found to be maximum in the central region and also, there exist a radial temperature gradient between the fuel rods. The major advantage of performing this kind of analysis is the prediction of thermal-hydraulic behavior of a fuel assembly with much ease.

  • PDF

Two Dimensional Analysis for Lubrication of the Piston Ring of Internal Combustion Engine (내연기관 피스톤 링의 2차원 윤활 해석)

  • 이재선;한동철;이수목;정균양
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.89-95
    • /
    • 1997
  • This paper considers two dimensional analysis for lubrication between the single piston ring and the cylinder liner. The piston ring is treated as a reciprocating, hydrodynamic bearing with combined sliding and squeeze motion. Reynolds' equation is used, to model lubrication with Reynolds' cavitation boundary condition. This analysis is developed to get the cyclic variation of minimum film thickness and viscous frictional force. Two types of piston ring face shape are considered. This result can be used to study the influence of ring shape design parameter to improve the characteristics of sealing and lubrication.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

Unsteady Aerodynamic Analysis for Helicopter Rotor in Hovering and Forward Flight Using Overlapped Grid (중첩 격자를 이용한 제자리 및 전진 비행하는 헬리콥터 로터의 비정상 공력해석)

  • Im, Dong-Kyun;Wie, Seong-Yong;Kim, Eu-Gene;Kwon, Jang-Hyuk;Lee, Duck-Joo;Park, Soo-Hyung;Chung, Ki-Hoon;Kim, Seung-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.215-223
    • /
    • 2009
  • In this paper, the helicopter aerodynamics is simulated in hovering and forward flight. Also, an overlapped grid technique is applied in this simulation to consider the blade motion and moving effects. The Caradonna & Tung's rotor blade was selected to analyze the unsteady aerodynamics in hovering and non-lift forward flight. Also, the AH-1G rotor blade was selected in forward flight. In forward flight case, the numerical trim was applied to determine the cyclic pitching angles using Newton-Raphson method, and the numerical results were in good agreement with experimental data, especially, the BVI effects were well simulated in advancing side in comparison other numerical results. The governing equation is a three dimensional unsteady Euler equation, and the Riemann invariants condition is used for inflow and outflow at the boundary.

An analytic solution for the stirling engines with saw-toothed piston motions in adiabatic cylinders (단열실린더내에서 톱날파형 피스톤운동을 하는 스터링기관에 대한 해석적인 해)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1197-1205
    • /
    • 1988
  • An analytical method to predict qualitative performance characteristics of the Stirling Engines in the preliminary design stages is investigated. Both the expansion and the compression cylinder are treated as adiabatic and piston motions are approximated as saw-toothed waves. Basic equations which were originally proposed by Finkelstein consist of mass conservation and energy balances for each adiabatic cylinder. The approximation on piston motions and physical conditions make it possible to divide an engine cycle into four fundamental processes. In each process, first, pressure can be expressed as a function of the crank angle by solving a nonlinear first order ordinary differential equation and other thermodynamic variables are determined in turn. Application of the cyclic steady condition to the whole processes can complete a cycle. Also, further analysis results in analytic expressions for cyclic work and heat transfer in terms of the engine parameters and thermodynamic variables at boundary points. The results are expected useful as a quick reference for the engine performances. Finally, the present method can be applied to the other adiabatic analyses on the Stirling Engines with piece wise linear piston motions, if mass variations are predictable.