• Title/Summary/Keyword: Cycle performance

Search Result 3,352, Processing Time 0.025 seconds

A Discussion on the Deep Horizontal Drillhole Disposal Concept of Spent Nuclear Fuel in Korea (사용후핵연료의 심부수평시추공처분 개념에 관한 소고)

  • Kim, Kyungsu;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.355-362
    • /
    • 2019
  • This technical note introduces a newly-proposed concept of deep horizontal drillhole disposal of spent nuclear fuel, and considers how it can be applied in the Korean environment. This disposal concept, in which high-level radioactive waste is disposed in deep horizontal drillholes installed with directional drilling technique, is expected to have great advantages over the existing deep mined repository concept in economics and safety. Since this concept is still at the idea level, however, it is necessary for worldwide expert groups to demonstrate its safety and performance. In addition, the development of guidelines by the regulatory body should be supported. The Korean circumstances, which include a narrow territory and a high population density, as well as the amount of spent nuclear fuel, make the NIMBY (Not In My Back Yard) phenomenon very strong and the siting conditions difficult. Under these conditions, if the disposal section of deep horizontal drillhole concept can be located at the continental shelf, with a stable environment, rather than in a coastal land area, it is expected to alleviate the psychological anxiety of the local community and stakeholders. Moreover, even when constructing a centralized deep mined repository in the future, it is necessary to consider locating the repository in the continental shelf.

MDA Assessment of NaI(Tl), LaBr3(Ce), and CeBr3 Detectors for Freshly Deposited Radionuclides on the Soil (지표면 침적 방사성핵종에 대한 NaI(Tl), LaBr3(Ce) 및 CeBr3 검출기의 MDA 비교 평가)

  • Lee, Jun-Ho;Kim, Bong-Gi;Lee, Dong Myung;Byun, Jong-In
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.321-328
    • /
    • 2019
  • The detection performances of the NaI(Tl), $LaBr_3$(Ce) and $CeBr_3$ scintillation detectors, which can be used to rapidly evaluate the major artificial radionuclides deposited on the soil surface in a nuclear accident or radiological emergency, were compared. Detection performance was assessed by calculating the minimum detectable activity (MDA). The detection efficiency of each detector for artificial radionuclides was semi-empirically determined using mathematical modelling and point-like sources having certified radioactivity. The background gamma-ray energy spectrum for MDA evaluation was obtained from relatively wide and flat grassland, and the MDA values of each detector for the major artificial radionuclides that could be released in nuclear accidents were calculated. As a result, the relative MDA values of each detector regarding surface deposition distribution at normal environmental radiation level were evaluated as high in the order of the NaI(Tl), $LaBr_3$(Ce), and $CeBr_3$ detectors. These results were compared based on each detector's intrinsic and measurement environment background, detection efficiency, and energy resolution for the gamma-ray energy region of the radionuclide of interest.

Evaluation of Soil-Water Characteristic Curve for Domestic Bentonite Buffer (국내 벤토나이트 완충재의 함수특성곡선 평가)

  • Yoon, Seok;Jeon, Jun-Seo;Lee, Changsoo;Cho, Won-Jin;Lee, Seung-Rae;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • High-level radioactive waste (HLW) such as spent fuel is inevitably produced when nuclear power plants are operated. A geological repository has been considered as one of the most adequate options for the disposal of HLW, and it will be constructed in host rock at a depth of 500~1,000 meters below ground level with the concept of an engineered barrier system (EBS) and a natural barrier system. The compacted bentonite buffer is one of the most important components of the EBS. As the compacted bentonite buffer is located between disposal canisters with spent fuel and the host rock, it can restrain the release of radionuclides and protect canisters from the inflow of groundwater. Because of inflow of groundwater into the compacted bentonite buffer, it is essential to investigate soil-water characteristic curves (SWCC) of the compacted bentonite buffer in order to evaluate the entire safety performance of the EBS. Therefore, this paper conducted laboratory experiments to analyze the SWCC for a Korean Ca-type compacted bentonite buffer considering dry density, confined or unconfined condition, and drying or wetting path. There was no significant difference of SWCC considering dry density under unconfined condition. Furthermore, it was found that there was higher water suction in unconfined condition that in confined condition, and higher water suction during drying path than during wetting path.

A Study on the Strategy for Improvement of Operational Test and Evaluation of Weapon System and the Determination of Priority (무기체계 운용시험평가 개선전략 도출 및 우선순위 결정)

  • Lee, Kang Kyong;Kim, Geum Ryul;Yoon, Sang Don;Seol, Hyeon Ju
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.177-189
    • /
    • 2021
  • Defense R&D is a key process for securing weapons systems determined by mid- and long-term needs to cope with changing future battlefield environments. In particular, the test and evaluation provides information necessary to determine whether or not to switch to mass production as the last gateway to research and development of weapons systems and plays an important role in ensuring performance linked to the life cycle of weapons systems. Meanwhile, if you look at the recent changes in the operational environment of the Korean Peninsula and the defense acquisition environment, you can see three main characteristics. First of all, continuous safety accidents occurred during the operation of the weapon system, which increased social interest in the safety of combatants, and the efficient execution of the limited defense budget is required as acquisition costs increase. In addition, strategic approaches are needed to respond to future battlefield environments such as robots, autonomous weapons systems (RAS), and cyber security test and evaluation. Therefore, in this study, we would like to present strategies for improving the testing and evaluation of weapons systems by considering the characteristics of the security environment that has changed recently. To this end, the improvement strategy was derived by analyzing the complementary elements of the current weapon system operational test and evaluation system in a multi-dimensional model and prioritized through the hierarchical analysis method (AHP).

Synthesis and Electrochemical Properties of Zn and Al added LiNi0.85Co0.15O2 Cathode Materials (Zn와 Al을 첨가한 LiNi0.85Co0.15O2 양극활물질의 제조 및 전기화학적 특성평가)

  • Kim, Su-Jin;Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.42-48
    • /
    • 2021
  • Zn and Al added LiNi0.85Co0.15O2 cathode materials were synthesized to improve electrochemical properties and thermal stability using a solid-state route. Crystal structure, particle size and surface shape of the synthesized cathode materials was measured using XRD (X-ray diffraction) and SEM (scanning electron microscopy). CV (cyclic voltammetry), first charge-discharge profiles, rate capability, and cycle life were measured using battery cycler (Maccor, series 4000). Strong binding energy of Al-O bond enhanced structure stability of cathode material. Electrochemical properties were improved by preventing cation mixing between Li+ and Ni2+. Large ion radius of Zn+ increased lattice parameter of NC cathode material, which meant unit-cell volume was expanded. NCZA25 showed 80% of capacity retention at 0.5 C-rate during 100 cycles, which was 12% higher than that of NC cathode. The discharge capacity of NCZA25 showed 104 mAh/g at 5 C-rate. NCZA25 achieved 36 mAh/g more capacity than that of NC cathod. NCZA25 cathode material showed excellent rate capability and cycling performance.

Structural Stability Analysis of Medical Waste Sterilization Shredder (의료폐기물 멸균분쇄용 파쇄기의 구조적 안정성 분석)

  • Azad, Muhammad Muzammil;Kim, Dohoon;Khalid, Salman;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.409-415
    • /
    • 2021
  • Medical waste management is becoming increasingly important, specifically in light of the current COVID-19 pandemic, as hospitals, clinics, quarantine centers, and medical research institutes are generating tons of medical waste every day. Previously, a traditional incineration process was utilized for managing medical waste, but the lack of landfill sites, and accompanying environmental concerns endanger public health. Consequently, an innovative sterilization shredding system was developed to resolve this problem. In this research, we focused on the design and numerical analysis of a shredding system for hazardous and infectious medical waste, to establish its operational performance. The shredding machine's components were modeled in a CAD application, and finite element analysis (FEA) was conducted using ABAQUS software. Static, fatigue, and dynamic loading conditions were used to analyze the structural stability of the cutting blade. The blade geometry proved to be effective based on the cutting force applied to shred medical waste. The dynamic stability of the structure was verified using modal analysis. Furthermore, an S-N curve was generated using a high cycle fatigue study, to predict the expected life of the cutting blade. Resultantly, an appropriate shredder system was devised to link with a sterilization unit, which could be beneficial in reducing the volume of medical waste and disposal time, thereof, thus eliminating environmental issues, and potential health hazards.

A ScanSAR Processing without Azimuth Stitching by Time-domain Cross-correlation (Azimuth Stitching 없는 ScanSAR 영상화: 시간영역 교차상관)

  • Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.251-263
    • /
    • 2022
  • This paper presents an idea of ScanSAR image formation. For image formation of ScanSAR that utilizes the burst mode for raw signal acquisition, most conventional single burst methods essentially require a step of azimuth stitching which contributes to radiometric and phase distortions to some extent. Time-domain cross correlation could replace SPECAN which is most popularly used for ScanSAR processing. The core idea of the proposed method is that it is possible to relieve the necessity of azimuth stitching by an extension of Doppler bandwidth of the reference function to the burst cycle period. Performance of the proposed method was evaluated by applying it to the raw signals acquired by a spaceborne SAR system, and results satisfied all image quality requirements including 3 dB width, peak-to-sidelobe ratio (PSLR), compression ratio,speckle noise, etc. Image quality of ScanSAR is inferior to that of Stripmap in all aspects. However, it is also possible to improve the quality of ScanSAR image competitive to that of Stripmap if focused on a certain parameter while reduced qualities of other parameters. Thus, it is necessary for a ScanSAR processor to offer a great degree of flexibility complying with different requirements for different applications and techniques.

Learning Method for Regression Model by Analysis of Relationship Between Input and Output Data with Periodicity (주기성을 갖는 입출력 데이터의 연관성 분석을 통한 회귀 모델 학습 방법)

  • Kim, Hye-Jin;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.299-306
    • /
    • 2022
  • In recent, sensors embedded in robots, equipment, and circuits have become common, and research for diagnosing device failures by learning measured sensor data is being actively conducted. This failure diagnosis study is divided into a classification model for predicting failure situations or types and a regression model for numerically predicting failure conditions. In the case of a classification model, it simply checks the presence or absence of a failure or defect (Class), whereas a regression model has a higher learning difficulty because it has to predict one value among countless numbers. So, the reason that regression modeling is more difficult is that there are many irregular situations in which it is difficult to determine one output from a similar input when predicting by matching input and output. Therefore, in this paper, we focus on input and output data with periodicity, analyze the input/output relationship, and secure regularity between input and output data by performing sliding window-based input data patterning. In order to apply the proposed method, in this study, current and temperature data with periodicity were collected from MMC(Modular Multilevel Converter) circuit system and learning was carried out using ANN. As a result of the experiment, it was confirmed that when a window of 2% or more of one cycle was applied, performance of 97% or more of fit could be secured.

Exploratory Study of the Applicability of Kompsat 3/3A Satellite Pan-sharpened Imagery Using Semantic Segmentation Model (아리랑 3/3A호 위성 융합영상의 Semantic Segmentation을 통한 활용 가능성 탐색 연구)

  • Chae, Hanseong;Rhim, Heesoo;Lee, Jaegwan;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1889-1900
    • /
    • 2022
  • Roads are an essential factor in the physical functioning of modern society. The spatial information of the road has much longer update cycle than the traffic situation information, and it is necessary to generate the information faster and more accurately than now. In this study, as a way to achieve that goal, the Pan-sharpening technique was applied to satellite images of Kompsat 3 and 3A to improve spatial resolution. Then, the data were used for road extraction using the semantic segmentation technique, which has been actively researched recently. The acquired Kompsat 3/3A pan-sharpened images were trained by putting it into a U-Net based segmentation model along with Massachusetts road data, and the applicability of the images were evaluated. As a result of training and verification, it was found that the model prediction performance was maintained as long as certain conditions were maintained for the input image. Therefore, it is expected that the possibility of utilizing satellite images such as Kompsat satellite will be even higher if rich training data are constructed by applying a method that minimizes the impact of surrounding environmental conditions affecting models such as shadows and surface conditions.

Effects of Vegetation on Pollutants and Carbon Absorption Capacity in LID Facilities (LID시설에서의 오염물질 및 탄소흡수능에 식생이 미치는 영향)

  • Hong, Jin;Kim, Yuhyeon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 2022
  • As the impermeable area of soil increases due to urbanization, the water circulation system of the city is deteriorating. The existing guidelines for low impact development (LID) facilities installed to solve these water problems or in previous studies, engineering aspects are more prominent than landscaping aspects. This study attempted to present an engineering and landscaping model for reducing pollutants by identifying the effects of vegetation on rainfall outflows and pollutant reduction in bioretention and the economic aspects of planting. Based on the results of artificial rainfall monitoring at Jeonju Seogok Park and the literature on vegetation rainfall runoff and pollutant reduction performance, the best vegetation for reducing pollution compared to cost was Lythrum salicaria L and Salix gracilistyla Miq. was the best vegetation for carbon storage. If you insist to design plants with only these two plantation, there is no choice but to take risks such as biodiversity. Herbaceous plants such as Lythrum salicaria L can be replaced by death of the plants or pests if considered planting various plants. The initial planting cost could expensive, but it is also necessary to mix and plant Salix gracilistyla Miq, which are woody plants that are advantageous in terms of maintenance, according to the surrounding environment and conditions. Based on the conclusions drawn in this study, it can be a reference material when considering the reduction of pollution by species and carbon storage of vegetation in LID facilities.