• Title/Summary/Keyword: Cycle frequency

Search Result 1,047, Processing Time 0.029 seconds

An Analysis of Fatigue Characteristics of Upper limbs by Task Conditions Change (작업조건의 변화에 따른 상지의 피로 특성 분석)

  • Lee, Sang-Do;Sim, Jeong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.3
    • /
    • pp.75-86
    • /
    • 2005
  • To investigate the fatigue characteristic of upper limbs, this study analyzed RMS(root mean square) and MPF(mean power frequency) value between initial and terminal stages of each experiment condition. And the effect of intermittent endurance time was evaluated using the Borg's CR10 value that was measured for the parts of upper limb. According to the results of ANOVA on RMS value, there were significant difference on the %MVC about push, pull, and down force exertion. Particularly the ANOVA of up force exertion was significant difference on shoulder flexion, elbow flexion and rest time as well as %MVC. The results of ANOVA for MPF value were significant difference on the %MVC in regard of the push and up force exertion. In case of up force exertion, MPF value tended to shift low frequency at all of the experiment conditions. According to the analysis of duty cycle, RMS value considerably increased over 50% duty cycle and as the %MVC increased, the duty cycle affected the increase of RMS value. MPF value for up and down force exertion decreased at 33%, 50% and 67% duty cycle for all of %MVC. Borg CR10 value of hand and forearm were below the 3-point to the 40% of endurance time at 30%MVC and to the 20% of endurance time at 50%MVC with the exception of up force exertion. But Borg CR10 values of upper arm and shoulder at up force exertion were more than 3-point to the 20% of endurance time at 30%MVC and in the start point of endurance time at 50%MVC.

A Study on a Safety Life Cycle of IEC 61508 for Functional Safety (기능안전을 위한 IEC 61508의 안전수명주기에 관한 연구)

  • Kim, Sung Kyu;Kim, Yong Soo
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.81-91
    • /
    • 2014
  • The IEC 61508 standard was established to specify the functional safety of E/E/PE safety-related systems. Safety life cycle to provide the framework and direction for the application of IEC 61508 is included in this standard. In this paper, we describe overviews, objects, scopes, requirements and activities of each phase in safety life cycle. In addition, we introduce safety integrity level(SIL) which is used for verifying the safety integrity requirements of E/E/PE system and perform a case study to estimate hardware SIL by FMEDA. The SIL is evaluated by two criteria. One of them is the architectural constraints which restrict the maximum SIL by combination of SFF and HFT. The other is the probability of failure which is classified into PFD and PFH based on frequency of demand and calculated by safe or dangerous failure rates.

Illumination Control of LEDs in Visible Light Communication Using Manchester Code Transmission

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.303-309
    • /
    • 2016
  • In this paper, we introduce a new method for controlling the illumination of LEDs in visible light communication (VLC) by changing the duty cycle of Manchester code. When VLC data were transmitted in Manchester code, the average optical power of the LEDs was proportional to the duty cycle. In experiments, we controlled the illumination of a $3{\times}3$ LED array from 10% to 90% of its peak value by changing the duty cycle of the Manchester code. The synchronizing clocks required for encoding and decoding the Manchester code were supplied by pulse generators that were connected to a 220 V power line. All pulse generators made the same pulses with a repetition frequency of 120 Hz, and they were synchronized with the full-wave rectified voltage of the power line. This scheme is a very simple and useful method for constructing indoor wireless sensor networks using LED light.

Simulation on a 2-Stage Compression $CO_2$ Cycle (2단압축 이산화탄소 사이클의 성능특성에 대한 해석적 연구)

  • Ryu, Chang-Gi;Cho, Hong-Hyun;Cho, Sung-Wook;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.404-409
    • /
    • 2005
  • In this paper a 2-stage $CO_2$ cycle was simulated to predict the performance characteristics with operating parameters. The simulation results showed similar tendency compared to the measured system pressure, capacity, COP etc. System characteristics were analyzed with the variations of outdoor temperature and EEV opening. In the simulation, the highest COP was 2.7 at 30-30 Hz and it decreased as compressor frequency increased. Besides, system COP can be increased by optimizing EEV opening.

  • PDF

Adaptive current-steering analog duty cycle corrector with digital duty error detection (디지털 감지기를 통해 전류 특성을 조절하는 아날로그 듀티 사이클 보정 회로)

  • Choi, Hyun-Su;Kim, Chan-Kyung;Kong, Bai-Sun;Jun, Young-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.465-466
    • /
    • 2006
  • In this paper, novel analog duty cycle corrector (DCC) with a digital duty error detector is proposed. The digital duty error detector measures the duty error of the clock and converts it into a digital code. This digital code is then used to accurately correct the duty ratio by adaptively steering the charge-pump current. The proposed duty cycle corrector was implemented using an 80nm DRAM process with 1.8V supply voltage. The simulation result shows that the proposed duty cycle corrector improves the settling time up to $70{\sim}80%$ at 500MHz clock frequency for the same duty correction accuracy as the conventional analog DCC.

  • PDF

Multiple input describing function analysis of non-classical aileron buzz

  • Zafar, Muhammad I.;Fusi, Francesca;Quaranta, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.203-218
    • /
    • 2017
  • This paper focuses on the computational study of nonlinear effects of unsteady aerodynamics for non-classical aileron buzz. It aims at a comprehensive investigation of the aileron buzz phenomenon under varying flow parameters using the describing function technique with multiple inputs. The limit cycle oscillatory behavior of an asymmetrical airfoil is studied initially using a CFD-based numerical model and direct time marching. Sharp increases in limit cycle amplitude for varying Mach numbers and angles of attack are investigated. An aerodynamic describing function is developed in order to estimate the variation of limit cycle amplitude and frequency with Mach number and angle of attack directly, without time marching. The describing function results are compared to the amplitudes and frequencies predicted by the CFD calculations for validation purposes. Furthermore, a limited sensitivity analysis is presented to demonstrate the potential of the approach for aeroelastic design.

A study on extract in gait pattern characteristic using a tilt sensor and EMG (기울기 센서와 근전도를 이용한 보행패턴 특징 추출에 관한 연구)

  • Moon, D.J.;Kim, J.Y.;Jung, H.D.;Noh, S.C.;Choi, H.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.75-84
    • /
    • 2013
  • In this study, the patterns and characteristics according to gait cycle were analyzed using to EMG signals during walking, and analyzed in the time domain and frequency domain. The experiments was performed divide to level-ground walking and stair walking, and gait cycle was analysis by stance and swing. In the sagittal plane by using the tilt sensor measures the angle of the lower leg, and EMG was measured from the quadriceps and biceps femoris. The tilt of the lower leg was showed the biggest tilt at HS, and showed lowest value at TO. All in walking according to the gait cycle IEMG showed a specific pattern, and is expected useful to determine the gait cycle and kind. In the frequency domain analysis was using STFT on able to frequency analysis according to time, and using the tilt sensor was identify gait cycle. We analyzed also spectrum of the results of the STFT in all gait types, and recognized that stance had broad bandwidth than that of swing. Through this study, it was confirmed the possibility of judgment and analysis of the gait cycle using EMG and the tilt in the sagittal plane of the lower leg. When used it, can improve the quality of life of amputation patients

  • PDF

Simulation Study on the Performance Improvement of a $CO_2$ System Applying a Two-stage Phase-separate Cycle (2단압축 상분리 사이클을 적용한 이산화탄소 시스템의 성능향상에 관한 해석적 연구)

  • Ryu Chang-Gi;Lee Ho-Seong;Kim Yong-Chan;Cho Hong-Hyun;Cho Sung-Wook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.641-648
    • /
    • 2006
  • In this study, a two-stage phase-separate cycle was investigated analytically to improve the performance of the $CO_2$ system in the cooling mode. The simulation results were verified with the measured data. The predictions using the simulation model were consistent with the measured data within ${\pm}20%$ deviations. The performance of the modified $CO_2$ system with the two-stage phase-separated cycle was analyzed with the variations of outdoor temperature and EEV opening. The cooling COP decreased with the increase of compressor frequency. The highest COP was 2.7 at compressor frequencies of 30 Hz and 30 Hz for the first and second compressors, respectively. In addition, the cooling COP increased by 9.3% with an application of optimum control of the first and second-stage EEV openings.

Fracture Mechanism of Gas Turbine Compressor Blades in a Combined Cycle Power Plant (복합화력발전소 가스터빈 압축기 블레이드에 대한 손상원인 고찰)

  • Yang, Kyeong-Hyeon;Song, Oh-Seop;Cho, Cheul-Whan;Yun, Wan-No;Jung, Nam-Geun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1025-1032
    • /
    • 2010
  • Gas turbine compressor blades used in a combined cycle power plant are possibly damaged and fractured during their operation. There are two possible causes of the failure of compressor blades; one is a defect of material quality which can be detected through some microscopic inspections for the fracture section, the other is high cycle fatigue problem caused by vibration and can be diagnosed by carrying out dynamic characteristics analysis for the blades. In this paper, in order to determine the cause of the failure of compressor blades in a combined cycle power plant, examination of the fracture section and the propagation mechanism of the crack via stress analysis are performed. Dynamic characteristics analysis via FRF estimation is also performed to identify the cause of failure.

The effects of damping on the limit cycle of a 2-dof friction induced self-oscillation system (마찰 기인 2 자유도계 시스템의 자려진동에 대한 댐핑의 영향)

  • 조용구;신기흥;오재웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.89-96
    • /
    • 2002
  • A two-degree of freedom model is suggested to understand the basic dynamical behaviors of the interaction between two masses of the friction induced vibration system. The two masses may be considered as the pad and the disk of the brake, The phase space analysis is performed to understand complicated dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters of the model especially by emphasizing on the damping parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, not only the existence of the limit cycle but also the size of the limit cycle is examined to demonstrate the non-linear dynamics that leads the unstable state. For the two different cases of the system frequency ((1)two masses with same natural frequencies, (2) with different natural frequencies), the propensity of limit cycle is discussed in detail. The results show an important fact that it may make the system worse when too much damping is present in the only one part of the masses.

  • PDF