• Title/Summary/Keyword: Cycle efficiency

Search Result 1,944, Processing Time 0.03 seconds

Establishment of BIM-LCC Analysis System for Selecting Optimal Design Alternative using Open KBIMS Libraries (개방형 KBIMS 라이브러리를 활용한 최적설계대안 선정을 위한 BIM-LCC분석 시스템 구축)

  • Lee, Chun-Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.153-161
    • /
    • 2020
  • Building information modeling (BIM) is a smart construction technique that is recognized as essential for current construction facility projects. The Public Procurement Service (a construction project-ordering agency) announced a plan to introduce BIM and has required changing the operation of projects by using BIM design information. LCC analysis is essential for items, quantity, and cost information of the construction, and it is expected that efficient work will be achieved by using BIM design information. In this study, a BIM-LCC analysis system was established for selecting optimal design alternatives by actively using open KBIMS libraries. The BIM-LCC analysis system consists of a single alternative and an optimal alternative LCC analysis, but it has a limitation in that only the architecture and machine libraries have been applied. However, by applying BIM, practical use and work efficiency can be expected. In order to use the method as an LCC analysis support tool with BIM design information in the future, it will be necessary to collect user opinions and improve the UI.

Design Requirement Analysis and Configuration Proposal of a Vertiport for Domestic Applications of the Urban Air Mobility (도심항공 모빌리티(UAM)의 국내 적용을 위한 수직이착륙장 설계 요구조건 분석 및 형상 제안)

  • Ahn, Byeong-Seon;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.40-51
    • /
    • 2021
  • In this paper, the design requirements was produced by analyzing domestic and foreign regulations of the vertical takeoff and landing site required to operate the urban air mobility (UAM) system in Korea and the size of the take-off and landing pads were defined, and the configuration of vertiport was proposed. First, for the metropolitan area with high population density, pilot locations of the vertical take-off and landing site were selected based on the demonstration routes suggested by the Ministry of Land, Infrastructure and Transport and analyzed the characteristics of each location and determined the number of possible installations of vertiport by measuring each site. After that, variables necessary for the operation of the vertical takeoff and landing area were set, and the hourly, daily, monthly aircraft operating cycle, the number of acceptable people, and efficiency were calculated according to the number of simultaneous operation and the number of stand. Finally, using CATIA, the configurations of the virtual vertiport was created by applying the design requirements.

A Simulation Study on the Hydrogen Liquefaction through Compact GM Refrigerator (소형 GM 냉동기를 이용한 수소 액화에 관한 시뮬레이션 연구)

  • JUNG, HANEUL;HAN, DANBEE;YANG, WONKYUN;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.534-540
    • /
    • 2022
  • Liquid hydrogen has the best storage capacity per unit mass and is economical among storage methods for using hydrogen as fuel. As the demand for hydrogen increases, the need to develop a storage and supply system of liquid hydrogen is emphasizing. In order to liquefy hydrogen, it is necessary to pre-cool it to a maximum inversion temperature of -253℃. The Gifford-McMahon (GM) refrigerator is the most reliable and commercialized refrigerator among small-capacity cryogenic refrigerators, which can extract high-efficiency hydrogen through liquefied hydrogen production and boil of gas re-liquefaction. Therefore, in this study, the optimal conditions for liquefying gas hydrogen were sought using the GM cryocooler. The process was simulated by PRO/II under various cooling capacities of the GM refrigerator. In addition, the flow rate of hydrogen was calculated by comparing with specific refrigerator capacity depending on the pressure and flow rate of a refrigerant medium, helium. Simulations were performed to investigate the optimal values of the liquefaction flow rate and compression pressure, which aim for the peak refrigeration effect. Based on this, a liquefaction system can be selected in consideration of the cycle configuration and the performance of the refrigerator.

Modeling of Precast Concrete Shear Walls BIM Program (BIM 프로그램을 이용한 프리캐스트 콘크리트 전단벽의 모델링)

  • Mun, Ju-Hyun;Yoon, Hyun-Sub;Kim, Jong-Won;Eom, Byung-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.451-462
    • /
    • 2022
  • The objective of the study is to establish a BIM modeling of precast concrete(PC) shear wall with various wall-to-base connections. The family library of PC shear wall was established in BIM program using component function in a IFC(Industry foundation classes) file format and SketchUp program. From the BIM program, the amounts of concrete, reinforcing bars and steel materials as well as the interference of arranged reinforcing bars can be accurately evaluated in the PC shear walls with spliced sleeves, bolt, or welding plate connection methods. Although the additional metallic materials such as steel plates, bolts, and nuts were used in the PC shear walls with welding plate connection method, their amounts of materials, economic efficiency, and environmental impact were similar to those with spliced sleeve connection. Consequently, the bolt or welding connection is a highly applicable method as wall-to-base connection of PC shear walls, and it was a more useful method than spliced sleeve method, particularly considering the constructability.

Analyzing Factors of Success of Film Using Big Data : Focusing on the SNS Utilization Index and Topic Keywords of the Film (빅데이터를 활용한 영화흥행 요인 분석: 영화 <기생충>의 SNS 활용지수와 토픽키워드 중심으로)

  • Kim, Jin-Wook
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • In the rapidly changing era of the fourth industry, big data is being used in various fields. In recent years, the use of big data has been rapidly applied to overall cultural and artistic contents, and among them, the use of big data is essential as a film genre with a lot of capital. This research method is analyzed as the film , which won the Palme d'Or Prize of the 72nd Cannes Film Festival in 2019 and the works and directors' award at the Academy Awards. The analyzed value predicts the film's performance through opinion mining, which gives the value of the change and sensitivity of each data cycle, and extracts the utilization index and topic keywords of SNS such as Facebook and Twitter to reflect the audience's interest. Identify the factors. As such, if model performance and model development can be predicted through model analysis of film performance using big data, the efficiency of the film production process will be maximized while the risk of production cost and the risk of film failure will be minimized.

Review on Effective Skills to Inhibit Dendrite Growth for Stable Lithium Metal Electrode (리튬금속전극의 덴드라이트 성장 억제 방안의 연구 동향)

  • Kim, Yerang;Park, Jihye;Hwang, Yujin;Jung, Cheolsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.51-68
    • /
    • 2022
  • Although lithium metal batteries have a high energy density, experimental skills capable of solving lots of problems induced by dendrite such as short circuit, low coulomb efficiency, capacity loss, and cycle performance are still only in academic research stage. In this paper, research cases for dendrite growth inhibition on lithium metal electrode were classified into four types: flexible SEI (solid electrolyte interface) layer responding to volume expansion of lithium metal electrode, SEI supporting layer to inhibit dendrite growth physically, SHES (self-healing electrostatic shield) mechanism to adjust lithium growth by leading uniform diffusion of Li+ ions, and finally micro-patterning to induce uniform deposition of lithium. We hope to advance the practical use of lithium metal electrode by analyzing pros and cons of this classification.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Implementation of Git's Commit Message Complex Classification Model for Software Maintenance

  • Choi, Ji-Hoon;Kim, Joon-Yong;Park, Seong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.131-138
    • /
    • 2022
  • Git's commit message is closely related to the project life cycle, and by this characteristic, it can greatly contribute to cost reduction and improvement of work efficiency by identifying risk factors and project status of project operation activities. Among these related fields, there are many studies that classify commit messages as types of software maintenance, and the maximum accuracy among the studies is 87%. In this paper, the purpose of using a solution using the commit classification model is to design and implement a complex classification model that combines several models to increase the accuracy of the previously published models and increase the reliability of the model. In this paper, a dataset was constructed by extracting automated labeling and source changes and trained using the DistillBERT model. As a result of verification, reliability was secured by obtaining an F1 score of 95%, which is 8% higher than the maximum of 87% reported in previous studies. Using the results of this study, it is expected that the reliability of the model will be increased and it will be possible to apply it to solutions such as software and project management.

The Effect of Gait Exercise Using a Mirror on Gait for Normal Adult in Virtual Reality Environment: Gait Characteristics Analysis (가상현실환경에서 정상성인의 거울보행이 보행특성에 미치는 영향)

  • Lee, Jae-Ho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.3
    • /
    • pp.233-246
    • /
    • 2022
  • Purpose : The study aims to determine the effects of virtual and non-virtual realities in a normal person's mirror walk on gait characteristics. Methods : Twenty male adults (Age: 27.8 ± 5.8 years) participated in the study. Reflection markers were attached to the subjects for motion analysis, and they walked in virtual reality environments with mirrors by wearing goggles that showed them the virtual environments. After walking in virtual environments, the subjects walked in non-virtual environments with mirrors a certain distance away after taking a 5 min break. To prevent the order effect caused by the experiential difference of gait order, the subjects were randomly classified into groups of 10 and the order was differentiated. During each walk, an infrared camera was used to detect motion and the marker positions were saved in real time. Results : Comparison between the virtual and non-virtual reality mirror walks showed that the movable range of the leg joints (ankle, knee, and hip joints), body joints (sacroiliac and atlantoaxial joints), and arm joints (shoulder and wrist joints) significantly differed. Temporal characteristics showed that compared to non-virtual gaits, the virtual gaits were slower and the cycle time and double limb support time of virtual gaits were longer. Furthermore, spacial characteristics showed that compared to non-virtual gaits, virtual gaits had shorter steps and stride lengths and longer stride width and horizontally longer center of movement. Conclusion : The reduction in the joint movement in virtual reality compared to that in non-virtual reality is due to adverse effects on balance and efficiency during walking. Moreover, the spatiotemporal characteristics change based on the gait mechanisms for balance, exhibiting that virtual walks are more demanding than non-virtual walks. However, note that the subject group is a normal group with no abnormalities in gait and balance and it is unclear whether the decrease in performance is due to the environment or fear. Therefore, the effects of the subject group's improvement and fear on the results need to be analyzed in future studies.

Water Sorption/Desorption Characteristics of Eutectic LiCl-KCl Salt-Occluded Zeolites

  • Harward, Allison;Gardner, Levi;Oldham, Claire M. Decker;Carlson, Krista;Yoo, Tae-Sic;Fredrickson, Guy;Patterson, Michael;Simpson, Michael F.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.259-268
    • /
    • 2022
  • Molten salt consisting primarily of eutectic LiCl-KCl is currently being used in electrorefiners in the Fuel Conditioning Facility at Idaho National Laboratory. Options are currently being evaluated for storing this salt outside of the argon atmosphere hot cell. The hygroscopic nature of eutectic LiCl-KCl makes is susceptible to deliquescence in air followed by extreme corrosion of metallic cannisters. In this study, the effect of occluding the salt into a zeolite on water sorption/desorption was tested. Two zeolites were investigated: Na-Y and zeolite 4A. Na-Y was ineffective at occluding a high percentage of the salt at either 10 or 20wt% loading. Zeolite-4A was effective at occluding the salt with high efficiency at both loading levels. Weight gain in salt occluded zeolite-4A (SOZ) from water sorption at 20% relative humidity and 40℃ was 17wt% for 10% SOZ and 10wt% for 20% SOZ. In both cases, neither deliquescence nor corrosion occurred over a period of 31 days. After hydration, most of the water could be driven off by heating the hydrated salt occluded zeolite to 530℃. However, some HCl forms during dehydration due to salt hydrolysis. Over a wide range of temperatures (320-700℃) and ramp rates (5, 10, and 20℃ min-1), HCl formation was no more than 0.6% of the Cl- in the original salt.