• Title/Summary/Keyword: Cycle Expansion

Search Result 415, Processing Time 0.025 seconds

A Chancteristic of Thermal Efficiency in Order to High Expansion Realization with a Retard of Intake Valve Closing Time in the Low Speed Diesel Engine (저속 디젤기관에서 흡기밸브 닫힘시기 지연시 고팽창 실현을 위한 열효율 특성)

  • Jang Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.42-49
    • /
    • 2006
  • In this research. the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engines to the high expansion diesel cycle, and general cycle features were analyzed after comparing these two cycles. Based on these analyses. an experimental single cylinder a long stroke with high expansion-diesel engine. of which S/B ratio was more than 3, was manufactured. After evaluating the base engine through basic experiments, a diesel engine was converted into the high expansion diesel engine by establish VCR device and VVT system Accordingly, the high expansion diesel cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case, heat efficiency increased by $5.0\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle, heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged pressure equipment. Then a high expansion diesel cycle engine is realized.

Advanced Dual Refrigerant Expansion Cycle for LNG Liquefaction (천연가스 액화용 이중 냉매 팽창 사이클)

  • Kim, Minki;Kim, Mungyu;Lee, Kihwan;Kim, Hyobin;Lee, Donghun;Min, Joonho;Kim, Jinmo
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.46-55
    • /
    • 2019
  • This paper presents a LNG Liquefaction cycle configuration using two stages of methane expansion (i.e. spliting into two stages as warm & cold to generate an additional inflection point within a cold composite curve) and a single stage of nitrogen expansion to improve the efficiency of the conventional Methane & Nitrogen Expansion Cycle. In comparison with Double Nitrogen Expansion Cycel and Methane & Nitrogen Expansion Cycle, the cycle efficiency has increased approximately from 13.92 and 13.13 to 12.08 kW/ton/day (8~15% efficiency increase). A Life Cycle Cost (LCC) analysis based on Net Present Value (NPV) also show an improvement in therms of project NPV, against a minor increment of a CAPEX.

A Study on the Theory Analysis and Engine Test Performance by a High Expansion Diesel Engine into Intake-Exhaust Consideration (흡.배기를 고려한 고팽창 저속 디젤 기관의 이론 해석과 기관 성능에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1141-1148
    • /
    • 2008
  • One of the methods to increase the efficiency of an engine is to expand pressures obtained from combustions equal to the pressure of atmosphere as much as possible and then convert thermal energy into mechanical energy also as much as possible. In this research, the Diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting Diesel engines to the Atkinson cycle, and general cycle features were analyzed after comparing these two cycles. In the case of fuel air the Diesel-Atkinson cycle considering intake and exhaust similar to real cycles, the value of thermal efficiency and average effective pressure increased, though their values were smaller than those of standard air amount cycle, when expansion compression ratio increased. When normal Diesel engines of which compression stroke and expansion stroke are all the same, was converted to the Atkinson cycle by changing the time of intake value close, combustion pressure reduced due to reduced expansion compression ratio and intake air amount due to decreased effective cycle volume.

A Study on the Composition of Atkinson Cycle and Thermodynamically Analysis for a Diesel Engine (디젤기관에 대한 앳킨슨사이클 구성과 사이클의 열역학적 해석에 관한 연구)

  • Kim Chul Soo;Jung Young Guan;Jang Tae lk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.185-193
    • /
    • 2005
  • The present study composed a diesel-atkinson cycle of high expansion as a method of achieving high efficiency in diesel cycle engines. It also interpreted the cycle engine thermodynamically analysis to determine the possibility of the improvement of thermal efficiency and clarified the characteristics of several factors . According to the result of theoretical analysis, heat efficiency was highest when expansion-compression ratio Reど:1. In addition. diesel engines with high apparent compression ratio had higher expansion-compression ratio than otto engines and consequently their effect of high expansion was high. which in turn enhanced thermal efficiency. When the atkinson cycle was implemented in a real diesel engine by applying the miller cycle through the variation of the closing time of the intake valve, the effective compression ratio and the quantify of intake air decreased and as a result, the effect of high expansion was not observed. Accordingly. the atkinson cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case. heat efficiency increased by $4.1\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle. heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged Pressure equipment. Then a diesel-atkinson cycle engine is realized.

Performance analysis of $CO_{2}$ refrigeration cycle with two-phase ejector (2상류이젝터를 이용하는 $CO_{2}$ 냉동사이클의 성능해석)

  • Lee Yoon-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.946-952
    • /
    • 2005
  • The $CO_{2}$ refrigeration cycle is expected to reduce the compressor work and increase the COP by applying two-phase ejector as a device for the recovery of dissipated expansion energy. In this study, the performance of the cycle was simulated and effects of the ejector shapes on the performance of the $CO_{2}$ refrigeration cycle were investigated. The following results were obtained through the cycle simulation. The COP of the $CO_{2}$ refrigeration cycle with two-phase ejector flow which expansion is occured in the isentropic manner is increased by a maximum of 24 $\%$ than the basic cycle with expansion valve If the velocity nonequilibrium in the mixing process is assumed the COP of the cycle is increased with the increase of the length and the decrease of the section area of the mixing tube. The best cycle performance is obtained when the divergent angle of diffuser is 7.

Numerical Study for the Effect of Expansion Device on the Performance of the $CO_2$ Cycle (이산화탄소 사이클에서 팽창장치의 영향에 관한 수치적 연구)

  • 김무근;김욱중;김유진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.84-90
    • /
    • 2004
  • In order to evaluate the performance of carbon dioxide cycle, a simulation model was developed to predict the steady state performance of $CO_2$ transcritical cycle. The expansion process is treated as an isenthalpic throttling process or isentropic expansion process. The mathematical model is based entirely on the basic energy conservation law and thermodynamic and transport properties of $CO_2$. A Parametric study has been conducted in order to investigate the effect of isentropic efficiency of expansion turbine and various operating conditions on the cycle performance. An optimal heat rejection pressure existed for the given evaporating temperature and outlet temperature of gas cooler.

A study of cycle-to-cycle variations with dwell angle in spark ignition engines (스파크 점화기관의 드웰각 변화에 의한 사이클 변동에 관한 연구)

  • Han, Seong-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1701-1709
    • /
    • 1997
  • The diagnostic used to observe the early flame development was a fiber optic spark plug, which enabled measurement of the flame front arrival times on a cycle-to-cycle basis. The data obtained with this fiber optic spark plug were analyzed to obtain two parameters to describe the behavior of the flame kernel : an expansion speed and a convection velocity. In addition, synchronized cylinder pressure data were taken to compare with the fiber optic spark plug data on a cyclic basis. Heat release analysis was performed on the cylinder pressure data to obtain the mass burning profile of the charge for each cycle. There was a significant correlation observed in the initial flame duration and the kernel expansion speed with dwell angle.

A High Expansion Effects of Atkinson Cycle by adopting Variable Intake Valve Closing Timing with Compensated Intake Air-mass and Effective Compression Ratio. (흡입공기량 및 유호압축비 보상시 흡입밸브닫힘시기 변화에 의한 고팽창효과)

  • Jeong, Yang-Joo;Kim, Yun-Young;Lee, Jong-Tai
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1698-1703
    • /
    • 2004
  • To understand the high expansion effects by adopting intake closing time in the cases of compensating intake air-mass and effective compression ratio simultaneously, fundamental study was carried out by using RICEM realizing Atkinson cycle. Intake air-mass and effective compression ratio were compensated by increasing supercharged pressure and geometric compression ratio. The results showed that the increasing rates of expansion ratio and expansion-compression ratio were increased by compensating both a intake air-mass and effective compression ratio the same tendencies were obtained with the increases of compression ratio and cut off ratio It was also found that LIVC has more advantages in expansion ratio and effective work than those of EIVC under above conditions.

  • PDF

EFFECT OF OVER-EXPANSION CYCLE IN A SPARK-IGNITION ENGINE USING LATE-CLOSING OF INTAKE VALVE AND ITS THERMODYNAMIC CONSIDERATION OF THE MECHANISM

  • Shiga, S.;Hirooka, Y.;Miyashita, Y.;Yagi, S.;Machacon, H.T.C.;Karasawa, T.;Nakamura, H.
    • International Journal of Automotive Technology
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents further investigation into the effect of over-expansion cycle in a spark-ignition engine. On the basis of the results obtained in previous studies, several combinations of late-closing (LC) of intake valve and expansion ratio were tested using a single-cylinder production engine. A large volume of intake capacity was inserted into the intake manifold to simulate multi-cylinder engines. With the large capacity volume, LC can decrease the pumping loss and then increase the mechanical efficiency. Increasing the expansion ratio from 11 to 23.9 with LC application can produce about 13% improvement of thermal efficiency which was suggested to be caused by the increased cycle efficiency. The decrease of compression ratio from 11 to 5.5 gives little effect on the thermal efficiency if the expansion ratio could be kept constant. Thus, the expansion ratio is revealed to be a determining factor for cycle efficiency, while compression ratio is no more important, which suggests the usefulness of controlling the intake charge with intake valve closure timing. These were successfully explained by simple thermodynamic calculation and thus the mechanism could be verified by the estimation.

  • PDF

Cycle Analysis of 2-Stage Expansion Claude Refrigerator with Turboexpanders (터보팽창기를 이용한 2단 팽창 Claude냉동사이클 해석)

  • Baek, J.H.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.130-139
    • /
    • 1994
  • A cycle analysis was performed for 2-stage expansion Claude refrigerators by a numerical method. The refrigerators are under recent development such that the reciprocating expanders of Collins cycle are replaced by new turboexpanders. A computer simulation program was written to predict the coefficient of performance of the refrigerators for several input parameters. It was found out that there exist unique optimum values for the ratio of expanded mass through the turboexpanders to the total mass and for the intermediate pressure of the 2-stage expansion. The maximum coefficient of performance was about $5{\times}10^{-4}$ at the optimal operation.

  • PDF