Botnets have been exploited for a variety of purposes, ranging from monetary demands to national threats, and are one of the most threatening types of attacks in the field of cybersecurity. Botnets emerged as a centralized structure in the early days and then evolved to a P2P structure. Bitcoin is the first online cryptocurrency based on blockchain technology announced by Satoshi Nakamoto in 2008 and is the most widely used cryptocurrency in the world. As the number of Bitcoin users increases, the size of Bitcoin network is also expanding. As a result, a botnet using the Bitcoin network as a C&C channel has emerged, and related research has been recently reported. In this study, we propose an encrypted botnet C&C communication mechanism and technique in the Bitcoin network and validate the proposed method by conducting performance evaluation through various experiments after building it on the Bitcoin testnet. By this research, we want to inform the possibility of botnet threats in the Bitcoin network to researchers.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.2
/
pp.267-277
/
2022
Due to the increasing proportion of cloud and remote working environments, various information security incidents are occurring. Insider threats have emerged as a major issue, with cases in which corporate insiders attempting to leak confidential data by accessing it remotely. In response, insider threat detection approaches based on machine learning have been developed. However, existing machine learning methods used to detect insider threats do not take biases and variances into account, which leads to limited performance. In this paper, boosting-type ensemble learning algorithms are applied to verify the performance of malicious insider detection, conduct a close analysis, and even consider the imbalance in datasets to determine the final result. Through experiments, we show that using ensemble learning achieves similar or higher accuracy to other existing malicious insider detection approaches while considering bias-variance tradeoff. The experimental results show that ensemble learning using bagging and boosting methods reached an accuracy of over 98%, which improves malicious insider detection performance by 5.62% compared to the average accuracy of single learning models used.
This paper proposes a method for detecting malicious domains considering human habitual characteristics by building a Deep Learning model based on LSTM (Long Short-Term Memory). DGA (Domain Generation Algorithm) malicious domains exploit human habitual errors, resulting in severe security threats. The objective is to swiftly and accurately respond to changes in malicious domains and their evasion techniques through typosquatting to minimize security threats. The LSTM-based Deep Learning model automatically analyzes and categorizes generated domains as malicious or benign based on malware-specific features. As a result of evaluating the model's performance based on ROC curve and AUC accuracy, it demonstrated 99.21% superior detection accuracy. Not only can this model detect malicious domains in real-time, but it also holds potential applications across various cyber security domains. This paper proposes and explores a novel approach aimed at safeguarding users and fostering a secure cyber environment against cyber attacks.
The IT environment is changing due to the acceleration of digital transformation in enterprises and organizations. This expansion of the digital space makes centralized cybersecurity controls more difficult. For this reason, cyberattacks are increasing in frequency and severity and are becoming more sophisticated, such as ransomware and digital supply chain attacks. Even in large organizations with numerous security personnel and systems, security incidents continue to occur due to unmanaged and unknown threats and vulnerabilities to IT assets. It's time to move beyond the current focus on detecting and responding to security threats to managing the full range of cyber risks. This requires the implementation of asset Inventory for comprehensive management by collecting and integrating all IT assets of the enterprise and organization in a wide range. IT Asset Management(ITAM) systems exist to identify and manage various assets from a financial and administrative perspective. However, the asset information managed in this way is not complete, and there are problems with duplication of data. Also, it is insufficient to update of data-set, including Network Infrastructure, Active Directory, Virtualization Management, and Cloud Platforms. In this study, we, the researcher group propose a new framework for automated 'Comprehensive IT Asset Management(CITAM)' required for security operations by designing a process to automatically collect asset data-set. Such as the Hostname, IP, MAC address, Serial, OS, installed software information, last seen time, those are already distributed and stored in operating IT security systems. CITAM framwork could classify them into unique device units through analysis processes in term of aggregation, normalization, deduplication, validation, and integration.
KIPS Transactions on Computer and Communication Systems
/
v.6
no.7
/
pp.321-328
/
2017
As the cyber threats become more sophisticated and intelligent, the cases of cyber-infringement accidents are rapidly increasing. As a result, awareness of the importance of cyber security professionals has led to many cyber security-related educational programs. These programs provided with education curriculum aimed because cyber security workforce and job-based cyber security education research are not properly done. In this study, we developed a new cyber security education curriculum that defines and reflects cyber security personnel and knowledge system. In this study is not composed solely of the education contents related to the defenses emphasized in the existing education curriculum, but developed education curriculum to train a professional and balanced cyber security manpower by adding education contents in the attack field.
Recently, the Ministry of National Defense has included embedded software for weapon systems as targets for the Defense cyber security. The Concept has been extended and evolved from the cyber security area that was previously limited to the information domain. The software is becoming increasingly important in weapon systems, and it is clear that they are subject to cyber threats. Therefore, We would like to suggest a improvement direction by diagnosing problems in terms of cyber security of the weapon systems for the life cycle. In order to improve cyber security of weapon systems, comprehensive policy including the weapon embedded software management should be established and the involved stakeholder should be participated in the activities.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.10a
/
pp.358-361
/
2016
The North and South Korea for the peaceful reunification of the Republic of Korea, to lead the transformation and reform, and to complement the policy making and negotiations, there is a need for cyber security policy to practice. This paper explores the definition and overseas cyber terrorism and cyber warfare correspondence, correspondence between the versions of the technology between versions. Analysis of cyber security activities in the North and South confrontation, and research the cyber security policy against the unification. In this study, we compared the unification to build and operate a secure cyberspace from cyber threats and cyber security policy suggestions for ways of rational and legal.
International Journal of Computer Science & Network Security
/
v.21
no.9
/
pp.1-10
/
2021
The Internet of things (IoT) is the main advancement in data processing and communication technologies. In IoT, intelligent devices play an exciting role in wireless communication. Although, sensor nodes are low-cost devices for communication and data gathering. However, sensor nodes are more vulnerable to different security threats because these nodes have continuous access to the internet. Therefore, the multiparty security credential-based key generation mechanism provides effective security against several attacks. The key generation-based methods are implemented at sensor nodes, edge nodes, and also at server nodes for secure communication. The main challenging issue in a collaborative key generation scheme is the extensive multiplication. When the number of parties increased the multiplications are more complex. Thus, the computational cost of batch key and multiparty key-based schemes is high. This paper presents a Secure Multipart Key Distribution scheme (SMKD) that provides secure communication among the nodes by generating a multiparty secure key for communication. In this paper, we provide node authentication and session key generation mechanism among mobile nodes, head nodes, and trusted servers. We analyzed the achievements of the SMKD scheme against SPPDA, PPDAS, and PFDA schemes. Thus, the simulation environment is established by employing an NS 2. Simulation results prove that the performance of SMKD is better in terms of communication cost, computational cost, and energy consumption.
International Journal of Computer Science & Network Security
/
v.24
no.3
/
pp.1-11
/
2024
Payment systems are evolving, and this study examines how blockchain and AI improve online transactional security and service quality. The study examines micro and macro payment systems, compares online, and offline methods all over the world. The study also examines how blockchain and AI affect payment system security, privacy, and efficiency globally and rapidly digitizing economy. Digital payment methods are growing all over the world with high literacy and digital engagement, but they face challenges. The research highlights cybersecurity threats and the need to balance user convenience and security. It suggests blockchain and AI improve online payment services, supporting the policies for different countries. In this extensive research survey, we compare and evaluate the strengths and weaknesses of various payment systems, their practicality, and their robustness. This study also examines how technological innovations and payment systems interact to reveal how blockchain and AI could transform the financial sector. It seeks to understand how technology-enhancing service quality can boost customer satisfaction and financial stability in the digital age. The findings should help policymakers, financial institutions, and technology developers optimize online payment systems for a more secure and efficient digital economy.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.3
/
pp.465-479
/
2020
Regardless of the domestic and foreign governments/companies, SOC (Security Operation Center) has operated 24 hours a day for the entire year to ensure the security for their IT infrastructures. However, almost all SOCs have a critical limitation by nature, caused from heavily depending on the manual analysis of human agents with the text-based monitoring architecture. Even though, in order to overcome the drawback, technologies for a comprehensive visualization against complex cyber threats have been studying, most of them are inappropriate for the security monitoring in large-scale networks. In this paper, to solve the problem, we propose a novel visual approach for intuitive threats monitoring b detecting suspicious IP address, which is an ultimate challenge in cyber security monitoring. The approach particularly makes it possible to detect, trace and analysis of suspicious IPs statistically in real-time manner. As a result, the system implemented by the proposed method is suitably applied and utilized to the real-would environment. Moreover, the usability of the approach is verified by successful detecting and analyzing various attack IPs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.