• Title/Summary/Keyword: Cyber threat information

Search Result 242, Processing Time 0.021 seconds

An Encrypted Botnet C&C Communication Method in Bitcoin Network (비트코인 네크워크에서의 암호화된 봇넷 C&C 통신기법)

  • Kim, Kibeom;Cho, Youngho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.103-110
    • /
    • 2022
  • Botnets have been exploited for a variety of purposes, ranging from monetary demands to national threats, and are one of the most threatening types of attacks in the field of cybersecurity. Botnets emerged as a centralized structure in the early days and then evolved to a P2P structure. Bitcoin is the first online cryptocurrency based on blockchain technology announced by Satoshi Nakamoto in 2008 and is the most widely used cryptocurrency in the world. As the number of Bitcoin users increases, the size of Bitcoin network is also expanding. As a result, a botnet using the Bitcoin network as a C&C channel has emerged, and related research has been recently reported. In this study, we propose an encrypted botnet C&C communication mechanism and technique in the Bitcoin network and validate the proposed method by conducting performance evaluation through various experiments after building it on the Bitcoin testnet. By this research, we want to inform the possibility of botnet threats in the Bitcoin network to researchers.

Malicious Traffic Classification Using Mitre ATT&CK and Machine Learning Based on UNSW-NB15 Dataset (마이터 어택과 머신러닝을 이용한 UNSW-NB15 데이터셋 기반 유해 트래픽 분류)

  • Yoon, Dong Hyun;Koo, Ja Hwan;Won, Dong Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • This study proposed a classification of malicious network traffic using the cyber threat framework(Mitre ATT&CK) and machine learning to solve the real-time traffic detection problems faced by current security monitoring systems. We applied a network traffic dataset called UNSW-NB15 to the Mitre ATT&CK framework to transform the label and generate the final dataset through rare class processing. After learning several boosting-based ensemble models using the generated final dataset, we demonstrated how these ensemble models classify network traffic using various performance metrics. Based on the F-1 score, we showed that XGBoost with no rare class processing is the best in the multi-class traffic environment. We recognized that machine learning ensemble models through Mitre ATT&CK label conversion and oversampling processing have differences over existing studies, but have limitations due to (1) the inability to match perfectly when converting between existing datasets and Mitre ATT&CK labels and (2) the presence of excessive sparse classes. Nevertheless, Catboost with B-SMOTE achieved the classification accuracy of 0.9526, which is expected to be able to automatically detect normal/abnormal network traffic.