• Title/Summary/Keyword: Cyber Attack Modeling

Search Result 29, Processing Time 0.023 seconds

Design and implementation of an improved MA-APUF with higher uniqueness and security

  • Li, Bing;Chen, Shuai;Dan, Fukui
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.205-216
    • /
    • 2020
  • An arbiter physical unclonable function (APUF) has exponential challenge-response pairs and is easy to implement on field-programmable gate arrays (FPGAs). However, modeling attacks based on machine learning have become a serious threat to APUFs. Although the modeling-attack resistance of an MA-APUF has been improved considerably by architecture modifications, the response generation method of an MA-APUF results in low uniqueness. In this study, we demonstrate three design problems regarding the low uniqueness that APUF-based strong PUFs may exhibit, and we present several foundational principles to improve the uniqueness of APUF-based strong PUFs. In particular, an improved MA-APUF design is implemented in an FPGA and evaluated using a well-established experimental setup. Two types of evaluation metrics are used for evaluation and comparison. Furthermore, evolution strategies, logistic regression, and K-junta functions are used to evaluate the security of our design. The experiment results reveal that the uniqueness of our improved MA-APUF is 81.29% (compared with that of the MA-APUF, 13.12%), and the prediction rate is approximately 56% (compared with that of the MA-APUF (60%-80%).

A study on the cyber security assessment modeling of critical infrastructure (핵심기반시설 사이버 보안 평가 모델링 기법 연구)

  • Euom, Ieck-Chae
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.105-113
    • /
    • 2019
  • The purpose of this study is to analyze cyber security risk modeling of critical infrastructure, draw out limitations and improvement measures. This paper analyzed cyber security risk modeling of national critical infrastructure like as electricity sector, nuclear power plant, SCADA. This paper analyzed the 26 precedent research cases of risk modeling in electricity sector, nuclear power plant, SCADA. The latest Critical Infrastructure is digitalized and has a windows operating system. Critical Infrastructure should be operated at all times, it is not possible to patch a vulnerability even though find vulnerability. This paper suggest the advanced cyber security modeling characteristic during the life cycle of the critical infrastructure and can be prevented.

Adaptive Multi-Layer Security Approach for Cyber Defense (사이버 방어를 위한 적응형 다중계층 보호체제)

  • Lee, Seong-kee;Kang, Tae-in
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.1-9
    • /
    • 2015
  • As attacks in cyber space become advanced and complex, monotonous defense approach of one-one matching manner between attack and defense may be limited to defend them. More efficient defense method is required. This paper proposes multi layers security scheme that can support to defend assets against diverse cyber attacks in systematical and adaptive. We model multi layers security scheme based on Defense Zone including several defense layers and also discuss essential technical elements necessary to realize multi layers security scheme such as cyber threats analysis and automated assignment of defense techniques. Also effects of multi layers security scheme and its applicability are explained. In future, for embodiment of multi layers security scheme, researches about detailed architecture design for Defense Zone, automated method to select the best defense technique against attack and modeling normal state of asset for attack detection are needed.

Derivation of Security Requirements of Smart Factory Based on STRIDE Threat Modeling (STRIDE 위협 모델링에 기반한 스마트팩토리 보안 요구사항 도출)

  • Park, Eun-ju;Kim, Seung-joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1467-1482
    • /
    • 2017
  • Recently, Interests on The Fourth Industrial Revolution has been increased. In the manufacturing sector, the introduction of Smart Factory, which automates and intelligent all stages of manufacturing based on Cyber Physical System (CPS) technology, is spreading. The complexity and uncertainty of smart factories are likely to cause unexpected problems, which can lead to manufacturing process interruptions, malfunctions, and leakage of important information to the enterprise. It is emphasized that there is a need to perform systematic management by analyzing the threats to the Smart Factory. Therefore, this paper systematically identifies the threats using the STRIDE threat modeling technique using the data flow diagram of the overall production process procedure of Smart Factory. Then, using the Attack Tree, we analyze the risks and ultimately derive a checklist. The checklist provides quantitative data that can be used for future safety verification and security guideline production of Smart Factory.

An Asset-Mission Dependency Model Adaptation and Optimized Implementation for Efficient Cyber Mission Impact Assessment (효율적인 임무 피해 평가를 위한 자산-임무 의존성 모델 적용 및 최적화된 구현)

  • Jeon, Youngbae;Jeong, Hyunsook;Han, In sung;Yoon, Jiwon
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.10
    • /
    • pp.579-587
    • /
    • 2017
  • Cyber Mission Impact Assessment is one of the essential tasks which many militaries and industrial major companies should perform to effectively achieve their mission. The unexpected damage to an organization's assets results in damage to the whole system's performance of the organizations. In order to minimize the damage, it is necessary to quantify the available capacity of the mission, which can be achieved only with the remaining assets, and to immediately prepare a new second best plan in a moment. We therefore need to estimate the exact cyber attack's impact to the mission when the unwanted damage occurs by modeling the relationship between the assets and the missions. In this paper, we propose a new model which deals with the dependencies between assets and missions for obtaining the exact impact of a cyber attack. The proposed model distinguishes task management from asset management for an efficient process, and it is implemented to be optimized using a vectorized operation for parallel processing and using a buffer to reduce the computation time.

A CYBER SECURITY RISK ASSESSMENT FOR THE DESIGN OF I&C SYSTEMS IN NUCLEAR POWER PLANTS

  • Song, Jae-Gu;Lee, Jung-Woon;Lee, Cheol-Kwon;Kwon, Kee-Choon;Lee, Dong-Young
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.919-928
    • /
    • 2012
  • The applications of computers and communication system and network technologies in nuclear power plants have expanded recently. This application of digital technologies to the instrumentation and control systems of nuclear power plants brings with it the cyber security concerns similar to other critical infrastructures. Cyber security risk assessments for digital instrumentation and control systems have become more crucial in the development of new systems and in the operation of existing systems. Although the instrumentation and control systems of nuclear power plants are similar to industrial control systems, the former have specifications that differ from the latter in terms of architecture and function, in order to satisfy nuclear safety requirements, which need different methods for the application of cyber security risk assessment. In this paper, the characteristics of nuclear power plant instrumentation and control systems are described, and the considerations needed when conducting cyber security risk assessments in accordance with the lifecycle process of instrumentation and control systems are discussed. For cyber security risk assessments of instrumentation and control systems, the activities and considerations necessary for assessments during the system design phase or component design and equipment supply phase are presented in the following 6 steps: 1) System Identification and Cyber Security Modeling, 2) Asset and Impact Analysis, 3) Threat Analysis, 4) Vulnerability Analysis, 5) Security Control Design, and 6) Penetration test. The results from an application of the method to a digital reactor protection system are described.

Security-Reverse-Attack Engineering Life-cycle Model for Attack System and Attack Specification Models (공격시스템을 위한 보안-역-공격공학 생명주기 모델과 공격명세모델)

  • Kim, Nam-Jeong;Kong, Mun-Soo;Lee, Gang-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.6
    • /
    • pp.17-27
    • /
    • 2017
  • Recently, as cyber attacks have been activated, many such attacks have come into contact with various media. Research on security engineering and reverse engineering is active, but there is a lack of research that integrates them and applies attack systems through cost effective attack engineering. In this paper, security - enhanced information systems are developed by security engineering and reverse engineering is used to identify vulnerabilities. Using this vulnerability, we compare and analyze lifecycle models that construct or remodel attack system through attack engineering, and specify structure and behavior of each system, and propose more effective modeling. In addition, we extend the existing models and tools to propose graphical attack specification models that specify attack methods and scenarios in terms of models such as functional, static, and dynamic.

A Study on the Probabilistic Vulnerability Assessment of COTS O/S based I&C System (상용 OS기반 제어시스템 확률론적 취약점 평가 방안 연구)

  • Euom, Ieck-Chae
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.35-44
    • /
    • 2019
  • The purpose of this study is to find out quantitative vulnerability assessment about COTS(Commercial Off The Shelf) O/S based I&C System. This paper analyzed vulnerability's lifecycle and it's impact. this paper is to develop a quantitative assessment of overall cyber security risks and vulnerabilities I&C System by studying the vulnerability analysis and prediction method. The probabilistic vulnerability assessment method proposed in this study suggests a modeling method that enables setting priority of patches, threshold setting of vulnerable size, and attack path in a commercial OS-based measurement control system that is difficult to patch an immediate vulnerability.

Quantitative Risk Assessment on a Decentralized Cryptocurrency Wallet with a Bayesian Network (베이즈 네트워크를 이용한 탈중앙화 암호화폐 지갑의 정량적 위험성 평가)

  • Yoo, Byeongcheol;Kim, Seungjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.637-659
    • /
    • 2021
  • Since the creation of the first Bitcoin blockchain in 2009, the number of cryptocurrency users has steadily increased. However, the number of hacking attacks targeting assets stored in these users' cryptocurrency wallets is also increasing. Therefore, we evaluate the security of the wallets currently on the market to ensure that they are safe. We first conduct threat modeling to identify threats to cryptocurrency wallets and identify the security requirements. Second, based on the derived security requirements, we utilize attack trees and Bayesian network analysis to quantitatively measure the risks inherent in each wallet and compare them. According to the results, the average total risk in software wallets is 1.22 times greater than that in hardware wallets. In the comparison of different hardware wallets, we found that the total risk inherent to the Trezor One wallet, which has a general-purpose MCU, is 1.11 times greater than that of the Ledger Nano S wallet, which has a secure element. However, use of a secure element in a cryptocurrency wallet has been shown to be less effective at reducing risks.

Topic Automatic Extraction Model based on Unstructured Security Intelligence Report (비정형 보안 인텔리전스 보고서 기반 토픽 자동 추출 모델)

  • Hur, YunA;Lee, Chanhee;Kim, Gyeongmin;Lim, HeuiSeok
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.33-39
    • /
    • 2019
  • As cyber attack methods are becoming more intelligent, incidents such as security breaches and international crimes are increasing. In order to predict and respond to these cyber attacks, the characteristics, methods, and types of attack techniques should be identified. To this end, many security companies are publishing security intelligence reports to quickly identify various attack patterns and prevent further damage. However, the reports that each company distributes are not structured, yet, the number of published intelligence reports are ever-increasing. In this paper, we propose a method to extract structured data from unstructured security intelligence reports. We also propose an automatic intelligence report analysis system that divides a large volume of reports into sub-groups based on their topics, making the report analysis process more effective and efficient.