• Title/Summary/Keyword: Cyazofamid

Search Result 7, Processing Time 0.033 seconds

Fungicide Screening for Control of Summer Spinach Damping-off Caused by Rhizoctonia solani (Rhizoctonia solani에 의한 여름 시금치 잘록병의 방제를 위한 살균제 선발)

  • Kim, Byung-Sup;Yun, Yue-Sun;Yun, Choel-Soo;Zhang, Xuan-Zhe;Yeoung, Young-Rog;Hong, Sae-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • Damping-off of summer spinach caused by Rhizoctonia solani AG-4 has become a very important disease. For the control of summer spinach damping-off, antifungal activity of thirteen fungicides (pencycuron, trifloxystrobin, pyraclostrobin, azoxystrobin, kresoxim-methyl, validamycin, fluazinam, Benlate-T, flutolanil, cyazofamid, hexaconazole, tebuconazole, prochloraz) were evaluated in vitro and in vivo. Pencycuron, pyraclostrobin, validamycin, fluazinam, Benlate-T, hexaconazole, tebuconazole, and flutolanil significantly suppressed the mycelial growth of the pathogenic fungus. However, trifloxystrobin, azoxystrobia kresoxim-methyl, cyazofamid, and prochloraz did not represent good inhibition on the growth of R. solani. When applied by soil drenching (2,000 mg/L), pencycuron, pyraclostrobin, validamycin, fluazinam, Benlate-T, and flutolanil provided spinach survival ratios of 97.8%, 84.4%, 93.3%, 95.6%, 91.1%, and 86.7%, respectively. Also when treated in seed at 2,000 ing/L, pencycuron and pyraclostrobin displayed survival ratios of more than 85.1%.

Control Efficacy of Fungicides on Chinese Cabbage Clubroot under Several Conditions (발병 조건에 따른 살균제들의 배추 뿌리혹병 방제효과)

  • Eom, Min-Yong;Jo, Su-Jung;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol;Choi, Gyung-Ja
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.155-160
    • /
    • 2011
  • To develop the efficient screening methods for antifungal compound active to Chinese cabbage clubroot caused by Plasmodiophora brassicae, the control efficacy of three fungicides fluazinam, ethaboxam, and cyazofamid on the disease was tested under several conditions such as soil types, cultivars of Chinese cabbage, growth stages of the host, and inoculum concentrations. The in vivo antifungal activities of the fungicides on clubroot of two Chinese cabbage cultivars were hardly different. At 7- and 14-day-old seedlings, the fungicides were more effective to control of clubroot than at 21-day-old seedlings. In a commercial horticulture media soil (CNS), disease severity of untreated controls was higher and control activity of the fungicides was less than in a mixture of CNS and upland soil (1:1, v/v). Disease development of the seedlings inoculated with P. brassicae at $1.8{\times}10^7$ spores/pot to $1.1{\times}10^9$ spores/pot was almost same, but control efficacy of the fungicides was negatively correlated with inoculum dosages. To effectively select in vivo antifungal compound on Chinese cabbage clubroot, 14-day-old seedlings need to be inoculated with P. brassicae by drenching the spore suspension to give $1{\times}10^8$ spores/pot 1 day after chemical treatment. To develop clubroot, the inoculated plants are incubated in a growth chamber at $20^{\circ}C$ for 2 days, and then cultivated in a greenhouse ($20{\pm}5^{\circ}$) for four weeks.

The Assessment of Carbendazim, Cyazofamid, Diethofencarb and Pyrimethanil Residue Levels in P. ginseng (C. A. Meyer) by HPLC

  • Choi, Jeong-Heui;El-Aty, A.M.Abd;Park, Young-Seok;Cho, Soon-Kil;Shim, Jae-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.369-372
    • /
    • 2007
  • A fast and simple high-performance liquid chromatography (HPLC) method for the simultaneous determination of four pesticides having fungicide properties has been proposed for Panax ginseng, C. A. Meyer grown for 4, 5, or 6 years. Analytical separation was performed on C18 columns using ultraviolet detector under gradient conditions. Spiked blank samples were used as standards to counteract the matrix effect observed in the chromatographic determination. The HPLC response for all pesticides was linear, with determination coefficients > 0.9986. The average rate of recovery for pesticides spiked with 2 fortification levels was > 72% with relative standard deviations < 9%. The limits of quantification (LOQ) ranged from 0.03 to 0.16 ppm. These LOQs were lower than the respective maximum residue limits (MRL) established by the Korean Food and Drug Administration (KFDA), except for cyazofamid. The proposed method was used to determine pesticide residue levels in samples of ginseng obtained from Jeonnam Province (Republic of Korea). None of the pesticides were found in ginseng samples grown for 4, 5, or 6 years.

Greenhouse Whitefly and Thrips Management Model Using Natural Enemies in Semi-forcing Culture of Tomato (토마토 반촉성 시설 재배에서 천적중심 온실가루이와 총채벌레 관리모델)

  • Jeong, Tae-Sung;Hwang, Mi-Ran;Hwang, Se-Jung;Lee, Jae-Hong;Lee, An-Soo;Won, Heon-Seop;Hong, Dae-Ki;Cho, Jum-Rae;Ham, Eun Hye
    • Korean journal of applied entomology
    • /
    • v.56 no.4
    • /
    • pp.403-412
    • /
    • 2017
  • To investigate the control effect of insect pests by natural enemies, sticky traps were used in commercial tomato greenhouses in Chun-cheon and the experiment fields of Gangwon-do Agricultural Research and Extension Services, Republic of Korea using semi-forcing culture (February to June). We selected low toxicity pesticides, environment-friendly agricultural materials (EFAM), and natural enemies of the study species, combinations of which have been previously used in farms to control insect pests. In this study, Trialeurodes vaporariorum and thrips, which are major agricultural insect pests, were studied in experimental greenhouses. The adult T. vaporariorum population was observed in mid-April and the population of thrips showed occurrences in early April. Regarding seasonal fluctuation, T. vaporariorum peaked in mid-May and thrips peaked after June. one insecticide, spiromesifen suspension concentrate (SC); one fungicide, cyazofamid SC; and two EFAMs containing neem tree extract were shown to be slightly toxic to Encarsia formosa and Orius laevigatus. The results of this study could be used to develop management models using natural enemies of control the insect pests; T. vaporariorum and thrips in semi-forcing culture of tomato.

In Vivo Antifungal Activities of Various Fungicides against Plamodiophora brassicae (다양한 살균제의 배추 뿌리혹병 방제효과)

  • Jang, Kyoung-Soo;Kim, Jin-Cheol;Lim, He-Kyoung;Cho, Kwang-Yun;Choi, Gyung-Ja
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.422-428
    • /
    • 2005
  • In vivo antifungal activity of 44 fungicides consisting of 3 clubroot fungicides, 7 Oomycetes fungicides, 7 botriticides, 7 blasticides, 9 sterol biosynthesis inhibitors, and 11 broad spectrum fungicides were investigated against Plamodiophora brassicae, the causal agent of clubroot disease in Chinese cabbage. When fluazinam, flusulfamide and cyazofamid, commercial fungicide to control clubroot of Chinese cabbage in Korea, were applied to infested soil, club formations by P. brassicae were strongly inhibited at pot (35 $cm^2$) per 0.63 mg. Ethaboxam and cymoxanil, Oomycetes fungicides, completely controlled Chinese cabbage clubroot at 5 mg/pot, but cymoxanil represented sever phytotoxicity. Besides, dichlofluanid and procymidone of botriticides effectively controlled the development of Chinese cabbage clubroot at 2.5 mg/pot. Chlorothalonil, quintozene and trichlamide, broad spectrum fungicides, showed disease-control efficacy of 85%, 100% and 100% at 2.5 mg/pot, respectively. Most of sterol biosynthesis inhibitors displayed the strong antifungal activity against P. brassicae on cabbage seedlings and plant growth -retarding activity. From these results, 7 fungicides were selected and further tested in vivo antifungal activity against P. brassicae in glasshouse. Among them, ethaboxam showed the most antifungal activity against P. brassicae on cabbage seedlings, followed by fenarimol, procymidone, nuarimol and chlorothalonil.

The analysis of pesticide residue in leafy vegetables using the modified QuEChERS pre-treatment methods (QuEChERS 시료 처리법을 활용한 엽채류 중 잔류농약분석)

  • Kim, Yang-Hyeon;Hong, Su-Myeong;Son, Kyung-Ae;Lee, Ju-Young;Min, Zaw Win;Kwon, Hye-Young;Kim, Taek-Kyum;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.2
    • /
    • pp.121-130
    • /
    • 2012
  • In analyzing pesticide residue, LLE (liquid liquid extraction) is generally applied as one of the existing methods, but needed quite a lot of organic solvents and analytical apparatuses for the sample pre-treatment. In addition to its long analysis time and complex analytical processes, it is required to develop a more rapid and efficient method at present. In order to establish an economic and simple pesticide residue analytical method, this study carried out a comparative experiment on the existing analytical method with a new sample pre-treatment method named QuEChERS (quick, easy, cheap, effective, rugged and safe), which extracts and refines pesticide components by directly adding solid powder into the sample. Both the two analytical methods showed favorable values of correlation coefficient ($R^2$ > 0.99) of calibration curves. In terms of the detection limit (identification limit), imidacloprid showed 0.02 mg/kg, while the rest of pesticides showed a level around 0.05 mg/kg. The results of this experiment revealed that the recovery of LLE was 92.8-100.9% and the RSD was below 2.5%. On the other hand, the recovery of QuEChERS was 92.2-101.6% and RSD was below 1.9%. As a result of comparing the amount of pesticide residue by the time between the two analytical methods by using Paired t-Test, there was no significant difference between the two analytical methods as the p-value ranged from 0.3148-0.9890. Considering the results of the two methods, the QuEChERS method had similar recovery, compared to the analytical method using the existing LLE, and the analytical time was shortened by about one fourth of that of the existing method. Moreover, since it excludes the use of harmful organic solvents like dichloromethane during the process of extraction, thus leading to protecting experimenters health and remarkably reducing the amount of disused solvents, it is judged as an echo-friendly and economic analytical method.

Brief Introduction of Research Progresses in Control and Biocontrol of Clubroot Disease in China

  • He, Yueqiu;Wu, Yixin;He, Pengfei;Li, Xinyu
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.45-46
    • /
    • 2015
  • Clubroot disease of crucifers has occurred since 1957. It has spread to the whole China, especially in the southwest and nourtheast where it causes 30-80% loss in some fields. The disease has being expanded in the recent years as seeds are imported and the floating seedling system practices. For its effective control, the Ministry of Agriculture of China set up a program in 2010 and a research team led by Dr. Yueqiu HE, Yunnan Agricultural University. The team includes 20 main reseachers of 11 universities and 5 institutions. After 5 years, the team has made a lot of progresses in disease occurrence regulation, resources collection, resistance identification and breeding, biological agent exploration, formulation, chemicals evaluation, and control strategy. About 1200 collections of local and commercial crucifers were identified in the field and by artificiall inoculation in the laboratories, 10 resistant cultivars were breeded including 7 Chinese cabbages and 3 cabbages. More than 800 antagostic strains were isolated including bacteria, stretomyces and fungi. Around 100 chemicals were evaluated in the field and greenhouse based on its control effect, among them, 6 showed high control effect, especially fluazinam and cyazofamid could control about 80% the disease. However, fluzinam has negative effect on soil microbes. Clubroot disease could not be controlled by bioagents and chemicals once when the pathogen Plasmodiophora brassicae infected its hosts and set up the parasitic relationship. We found the earlier the pathogent infected its host, the severer the disease was. Therefore, early control was the most effective. For Chinese cabbage, all controlling measures should be taken in the early 30 days because the new infection could not cause severe symptom after 30 days of seeding. For example, a biocontrol agent, Bacillus subtilis Strain XF-1 could control the disease 70%-85% averagely when it mixed with seedling substrate and was drenching 3 times after transplanting, i.e. immediately, 7 days, 14 days. XF-1 has been deeply researched in control mechanisms, its genome, and development and application of biocontrol formulate. It could produce antagonistic protein, enzyme, antibiotics and IAA, which promoted rhizogenesis and growth. Its The genome was sequenced by Illumina/Solexa Genome Analyzer to assembled into 20 scaffolds then the gaps between scaffolds were filled by long fragment PCR amplification to obtain complet genmone with 4,061,186 bp in size. The whole genome was found to have 43.8% GC, 108 tandem repeats with an average of 2.65 copies and 84 transposons. The CDSs were predicted as 3,853 in which 112 CDSs were predicted to secondary metabolite biosynthesis, transport and catabolism. Among those, five NRPS/PKS giant gene clusters being responsible for the biosynthesis of polyketide (pksABCDEFHJLMNRS in size 72.9 kb), surfactin(srfABCD, 26.148 kb, bacilysin(bacABCDE 5.903 kb), bacillibactin(dhbABCEF, 11.774 kb) and fengycin(ppsABCDE, 37.799 kb) have high homolgous to fuction confirmed biosynthesis gene in other strain. Moreover, there are many of key regulatory genes for secondary metabolites from XF-1, such as comABPQKX Z, degQ, sfp, yczE, degU, ycxABCD and ywfG. were also predicted. Therefore, XF-1 has potential of biosynthesis for secondary metabolites surfactin, fengycin, bacillibactin, bacilysin and Bacillaene. Thirty two compounds were detected from cell extracts of XF-1 by MALDI-TOF-MS, including one Macrolactin (m/z 441.06), two fusaricidin (m/z 850.493 and 968.515), one circulocin (m/z 852.509), nine surfactin (m/z 1044.656~1102.652), five iturin (m/z 1096.631~1150.57) and forty fengycin (m/z 1449.79~1543.805). The top three compositions types (contening 56.67% of total extract) are surfactin, iturin and fengycin, in which the most abundant is the surfactin type composition 30.37% of total extract and in second place is the fengycin with 23.28% content with rich diversity of chemical structure, and the smallest one is the iturin with 3.02% content. Moreover, the same main compositions were detected in Bacillus sp.355 which is also a good effects biocontol bacterial for controlling the clubroot of crucifer. Wherefore those compounds surfactin, iturin and fengycin maybe the main active compositions of XF-1 against P. brassicae. Twenty one fengycin type compounds were evaluate by LC-ESI-MS/MS with antifungal activities, including fengycin A $C_{16{\sim}C19}$, fengycin B $C_{14{\sim}C17}$, fengycin C $C_{15{\sim}C18}$, fengycin D $C_{15{\sim}C18}$ and fengycin S $C_{15{\sim}C18}$. Furthermore, one novel compound was identified as Dehydroxyfengycin $C_{17}$ according its MS, 1D and 2D NMR spectral data, which molecular weight is 1488.8480 Da and formula $C_{75}H_{116}N_{12}O_{19}$. The fengycin type compounds (FTCPs $250{\mu}g/mL$) were used to treat the resting spores of P. brassicae ($10^7/mL$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A260) and at 280 nm (A280) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be lyzed by the FTCPs of XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol. In the five selected medium MOLP, PSA, LB, Landy and LD, the most suitable for growth of strain medium is MOLP, and the least for strains longevity is the Landy sucrose medium. However, the lipopeptide highest yield is in Landy sucrose medium. The lipopeptides in five medium were analyzed with HPLC, and the results showed that lipopeptides component were same, while their contents from B. subtilis XF-1 fermented in five medium were different. We found that it is the lipopeptides content but ingredients of XF-1 could be impacted by medium and lacking of nutrition seems promoting lipopeptides secretion from XF-1. The volatile components with inhibition fungal Cylindrocarpon spp. activity which were collect in sealed vesel were detected with metheds of HS-SPME-GC-MS in eight biocontrol Bacillus species and four positive mutant strains of XF-1 mutagenized with chemical mutagens, respectively. They have same main volatile components including pyrazine, aldehydes, oxazolidinone and sulfide which are composed of 91.62% in XF-1, in which, the most abundant is the pyrazine type composition with 47.03%, and in second place is the aldehydes with 23.84%, and the third place is oxazolidinone with 15.68%, and the smallest ones is the sulfide with 5.07%.

  • PDF