• Title/Summary/Keyword: Cyanobacterial toxin

Search Result 27, Processing Time 0.028 seconds

Molecular Classification of Commercial Spirulina Strains and Identification of Their Sulfolipid Biosynthesis Genes

  • Kwei, Chee Kuan;Lewis, David;King, Keith;Donohue, William;Neilan, Brett A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.359-365
    • /
    • 2011
  • Cyanobacterial strains of the genus Spirulina have recently been identified as an excellent source of sulfolipids, some of which possess anti-HIV properties. Thus, to investigate the distribution of sufolipid biosynthesis pathways in Spirulina, a genetic screening/phylogentic study was performed. Five different strains of Spirulina [Spirulina (Jiangmen), Spirulina sp., S. platensis, S. maxima, and Spirulina seawater] sourced from different locations were initially classified via 16S rDNA sequencing, and then screened for the presence of the sulfolipid biosynthesis genes sqdB and sqdX via a PCR. To assess the suitability of these strains for human consumption and safe therapeutic use, the strains were also screened for the presence of genes encoding nonribosomal peptide synthases (NRPSs) and polyketide synthases (PKSs), which are often associated with toxin pathways in cyanobacteria. The results of the 16S rDNA analysis and phylogenetic study indicated that Spirulina sp. is closely related to Halospirulina, whereas the other four Spirulina strains are closely related to Arthrospira. Homologs of sqdB and sqdX were identified in Spirulina (Jiangmen), Spirulina sp., S. platensis, and the Spirulina seawater. None of the Spirulina strains screened in this study tested positive for NRPS or PKS genes, suggesting that these strains do not produce NRP or PK toxins.

The Phylogenetic Relationship of Several Oscillatorian Cyanobacteria, Forming Blooms at Daecheong Reservoirs, Based on Partial 16S rRNA Gene Sequences

  • Lee, Wook-Jae;Bae, Kyung-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.504-507
    • /
    • 2001
  • The partial 16S gene sequences of six filamentous cyanobacterial strains, Oscillatoria lmosa KCTC AG10168, Oscillatoria princeps KCTC AG10153, Oscillatoria sp. KCTC AG 10184, Phormidium tenue KCTC AG10158, Phormidium parchydematicum KCTC AG10164, and Lyngbya hieronymusii KCTC AG10199, which were isolated in the late summer at Daecheong Reservoirs, were determined and assigned their phylogenetic and taxonomic position among taxa of order Ocillatoriales whose partial 16S rRNA gene sequences aligned in this suty, were very heterogeneously clustered with other taxa. The two strains, Oscillatoria limosa KCTC AG10168 and O. princeps KCTC AG10153, formed a cluster with O. sancta PCC7515, which supported 64% of the bootstrap trees with high similarity (19-96.15%). Strain Oscillatoria sp. KCTC AG10184, that was known to produce a nasty substance, was closely related to the toxic Oscillatoria group. The study on morphological variation in various environments and toxin production will confirm the taxonomic status of these species. Phormidium tenus KCTC AG10158 and Phormidium parchydematicum KCTC AG10164 made a cluster with other oscillatorian species of Phormidium, Oscillatoria, and Leptolynbya, which supproted 100% of the bootstrap trees with a very high sequence smilarity (96.8-99.8%) in thsi study. The sequence analysis in this study also supported that taxa of oscillatoriales are not monophyletic. Some of the fractures, such as the presence or absence of sheath and cell shape, which were used to define them, would be inadequate and should be reconfirmed. We suggest that sequences of partial 16S rRNA gene fragments aligned in this study should be more useful than morphological features in the identification and reconfirmation of the taxonomic status of these oscillactorian cyanobacteria.

  • PDF

Application of Quantum-dot Nanocrystals for Cyanobacterial Toxin-Microcystin Detection (나노크리스탈 Quantum-dot을 적용한 남조류 독소 Microcystin 탐지 연구)

  • Lee, Jinwook;Yu, Hye-Weon;Kim, In S.
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.705-711
    • /
    • 2007
  • Green quantum-dot nanocrystal (QD525) with anti-microcystin monoclonal antibody was applied for detection of microcystin, a monocyclic peptide hepatotoxin, extracted from the culture of Microcystis aeruginosa. The presence of microcystin in the cell lysate was verified by HPLC analysis with UV absorbance at 238 nm. Microcystis cell extract exhibited fluorescence emission spectra, which peak was around 460 nm because of their complex organic substances. When a spherical QD525 antibody conjugates (10~20 nm in diameter) were bound to the microcystins in the Microcystis cell lysate, the fluorescence intensity of the primary peak at 525 nm diminished while the secondary emission peak at 460 nm slightly increased intensities. It is due to energy transfer from the primary (major) to the secondary (minor) peak, resulting from physical deformation of QD525 and different environmental factors. On the other hand, other cell extracts did not show any fluorescence emission change. This study is very available for detecting and monitoring the microcystin because it is one step assay without washing step and portable spectrophotometer makes on-site measurement possible. For health risk assessment of the microcystin, the reliable and rapid system to detect and quantify microcystin is seriously required.

Formation of Chloroform from Algal Cell Cultures by Chlorination (배양조류의 염소소독에 의한 클로로포름 생성특성 연구)

  • Kim, Hak-Chul;Choi, Il-Whan
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.2
    • /
    • pp.40-48
    • /
    • 2009
  • Unusual bloom of toxic cyanobacteria in water bodies have drawn attention of environmentalists world over. Major bloom of Anabaena, Microcystis in water storage reservoir, rivers and lake leading to adverse health effects have been reported from Australia, England and many part of the world. These cyanobacterial cells can release intercellular matter like toxin in water and these intercellular matter can increase the concentration of organic matter. Cellysis can occur when algal cells meet the disinfectants like chlorine in water treatment plant and the resultant rising up of DOC(Dissolved Organic Carbon) or TOC(Total Organic Carbon) can increase the formation of disinfection by products. Disinfectants that kill microorganisms react with the organic or inorganic matter in raw water. In general disinfectants oxidize the matter in raw water and the resultant products can be harmful to human. There are always conflict about which is more important, disinfection or minimizing disinfection by products. The best treatment process for raw water is the process of the lowest disinfection by products and also the the lowest microorganism. In this study the cultured cells, Microcytis Aeruginosa(MA), Anabaena Flos-aquae(AF), Anabaena Cylindrica(AC), and the cells obtained in Daechung Dam(DC) whose dominant species was Anabaena Cylindrica were subjected to chlorination. Chlorination oxidizes inorganic and organic compounds and destruct live cells in raw water. Chloroform was analyzed for the cultured cells which were treated with $20mg/\ell$ dose of chlorine. In general chloroform is easily formed when dissolved organic matter react with chlorine. The cultured cells contributes the concentration of dissolved organic carbon and also that of total organic carbon which might be potent precusors of chloroform formed. The correlations of the concentration of chloroform, DOC and TOC were investigate in this study.

Effects of Cyanobacterial Bloom on Zooplankton Community Dynamics in Several Eutrophic Lakes (부영양호수에서 남조류 bloom이 동물플랑크톤 군집변화에 미치는 영향)

  • Kim, Bom-Chul;Choi, Eun-Mi;Hwang, Soon-Jin;Kim, Ho-Sub
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.366-373
    • /
    • 2000
  • Toxin production and low digestibility of cyanobacteria are known to cause low exploitability of cyanobacteria by zooplankton. In this study, we compared relative tolerance and compatibility of zooplankton taxa in eight eutrophic lakes, exposed to frequent cyanobacterial blooms, uring the summer season of 1999. Microcystis, Anabaena, Oscillatoria and Phormidium were common cyanobacteria in all lakes. with relatively lower $NO_3-N$ concentration (<0.2 mgN/l) and TN/TP ratio (<20), compared with other lakes where colonial cyanobacteria dominated. Rotifers were dominant zooplankton in most lakes, and among them, Keratella, Polyarthra and Hexathra were common. The laboratory feeding experiment showed that relative copepods that greatly decreased (90%) after 4 day when cyanobacteria were used as the food source of zooplankton, while rotifers gradually increased with the change of dominant taxa from Keratella through Pompholyx to Monostyla. These results suggest that rotifers may be capable of coexisting with cyanobacteria by exploiting them for the food source.

  • PDF

Water Quality and Cyanobacterial Anatoxin-a Concentration in Daechung Reservoir (대청호의 수질과 남조류 독소 Anatoxin-A 농도의 관계)

  • Joung, Seong-Hyun;Kim, Jee-Hwan;Ahn, Chi-Yong;Choi, Shin-Sok;Kim, Hee-Sik;Oh, Hee-Mock
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.257-265
    • /
    • 2002
  • The current study was performed to elucidate the relationship between the anatoxin -a produced by cyanobacteria and aquatic environmental factors, Algal and water samples were collected from the Daechung Reservoir from June to November 2001. The physical factors of the water quality were measured in sifu, while the biological and chemical factors were examined in the laboratory. The concentrations of anatoxin-a in the algal and water samples were analyzed by HPLC using a fluorescence detector, and ranged from $0.61-8.68\;{\mu}g/g$ dw in the algal samples and $0.01-0.08\;{\mu}g/L$ in the water samples. The suggested maximum concentration of anatoxin-a for safe drinking water is $1\;{\mu}g/L$. The concentrations of anatoxin-a in the algal and water samples were highest in July. The relationships between tile aquatic environmental factors and the anatoxin-a concentration were also analyzed to identify the crucial elements for toxin production. The anatoxin-a concentrations in the algal samples exhibited a high correlation with nitrate, the TN/TP ratio, TDN (P<0.05), and TPN/TPP ratio (P<0.01), whereas the anatoxin-a concentrations in the water samples were highly related to the water temperature, conductivity (P<0.01) , pH, phycocyanin, and phycocyanin/chlorophyll a ratio (P<0.05).

Primer Evaluation for the Detection of Toxigenic Microcystis by PCR (독소 생성 Microcystis 검출을 위한 PCR primer의 평가)

  • 이현경;김준호;유순애;안태석;김치경;이동훈
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.166-174
    • /
    • 2003
  • Microcystin produced by cyanobacteria in surface waters, such as eutrophic lake and river, is a kind of serious environmental problems due to its toxicity to human and wild animals. Microcystin is synthesized nonribosomally by the large modular multi-functional enzyme complex known as microcystin synthetase encoded by the mcy gene cluster. Amplification of mcy genes by PCR from cultures and environmental samples is a simple and efficient method to detect the toxigenic Microcystis. In order to evaluate primers designed to detect toxic microcystin-producing strains, 17 cyanobacterial strains and 20 environmental samples were examined by PCR with 7 pairs of primers. Some microcystin-producing cyanobacteria were not detected with FAA-RAA, TOX4F-TOX4R and FP-RP primers. The fragment of unexpected size was amplified with NSZW2-NSZW1 primers in Microcystis strains isolated from the lakes in Korea. TOX1P-TOX1F primers failed in amplification of toxin-producing strains. Only MSF-MSR and TOX2P- TOX2F primers amplified the fragments of mcy genes from 11 strains of microcystin-producing Microcystis. The water samples taken from 20 lakes in Korea were analyzed by PCR using each of the primers. In all the water samples, cyanobacteria capable of producing microcystin were detected by the PCR with TOX2P-TOX2F primers. These results indicate that TOX2P-TOX2F primers are better than the other primers for detection of microcystin-producing Microcystis strains in Korea. The nucleotide sequences of mcy gene in Microcystis aeruginosa NIER10010 suggest genetic diversity of Korean isolates.