• Title/Summary/Keyword: Cyanobacteria genes

Search Result 28, Processing Time 0.025 seconds

Simultaneous Quantification of Cyanobacteria and Microcystis spp. Using Real-Time PCR

  • Oh, Kyoung-Hee;Jeong, Dong-Hwan;Shin, Seung-Hee;Cho, Young-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.248-255
    • /
    • 2012
  • In order to develop a protocol to quantify cyanobacteria and Microcystis simultaneously, the primers and probe were designed from the conserved regions of 16S rRNA gene sequences of cyanobacteria and Microcystis, respectively. Probe match analysis of the Ribosomal Database Project showed that the primers matched with over 97% of cyanobacterial 16S rRNA genes, indicating these can be used to amplify cyanobacteria specifically. The TaqMan probe, which is located between two primers, matched with 98.2% of sequences in genus GpXI, in which most Microcystis strains are included. The numbers of cyanobacterial genes were estimated with the emission of SYBR Green from the amplicons with two primers, whereas those of Microcystis spp. were measured from the fluorescence of CAL Fluor Gold 540 emitted by exonuclease activity of Taq DNA polymerase in amplification. It is expected that this method enhances the accuracy and reduces the time to count cyanobacteria and potential toxigenic Microcystis spp. in aquatic environmental samples.

Cyanobacterial Diversity Analysis Using cpcBA-Intergenic Spacer Region (cpcBA-Intergenic Spacer Region을 이용한 Cyanobacteria의 다양성 분석)

  • Choi Gang-Guk;Park Yong-Ha;Ahn Chi-Yong;Bae Myoung-Sook;Oh Hee-Mock
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.287-292
    • /
    • 2005
  • The cyanobacterial diversity was analyzed by restriction fragment length polymorphism (RFLP) of PCR-amplified rpcBA-Intergenic Spacer (IGS) genes and cpcBA-IGS gene sequencing with a sample collected at Chuso-ri in Daechung Reservoir on March 15, 2005, The Shannon-Weiner diversity index was 0.65, indicating that the cyanobacterial community structure was simple. PCR-RFLP profiles obtained were Phormidium spp. (58 clones), Anabaena spp. (14 clones), Microcystis spp. (4 clones), Spirulina sp. (1 clone) and uncultured cyanobacteria (2 clones). The PCR-RFLP of cpcBA-IGS revealed that Phormidium spp. and Anabaena spp. dominated in the invested sample. As a consequence, it seems that the analysis of functional genes such as cpcBA-IGS can be used for the species identification and community analysis of cyanobacteria.

Transgenic plants with cyanobacterial genes

  • Park, Youn-Il;Choi, Sang-Bong;Liu, Jang R.
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.267-275
    • /
    • 2009
  • Over the years, cyanobacteria have been regarded as ideal model systems for studying fundamental biochemical processes like oxygenic photosynthesis and carbon and nitrogen assimilation. Additionally, they have been used as human foods, sources for vitamins, proteins, fine chemicals, and bioactive compounds. Aiming to increase plant productivity as well as nutritional values, cyanobacterial genes involved in carbon metabolism, fatty acid biosynthesis, and pigment biosynthesis have been intensively exploited as alternatives to homologous gene sources. In this short review, transgenic plants with cyanobacterial genes generated over the last two decades are examined, and the future prospects for transgenic crops using cyanobacterial genes obtained from functional genomics studies of numerous cyanobacterial genomes information are discussed.

Evaluation of Photosynthetic Squalene Production of Engineered Cyanobacteria Using the Chemical Inducer-Free Expression System (무-유도인자 단백질 발현 시스템을 이용한 재조합 시아노박테리아의 광합성 스쿠알렌 생산 평가)

  • Choi, Sun Young;Woo, Han Min
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.298-304
    • /
    • 2021
  • Photosynthetic conversion through cyanobacteria and microalgae is an increasingly serious concern in the global warming crisis. Many value-added substances are produced through strain improvement, and much research and development is being conducted to determine its potential as an actual industrial strain. Economic barriers throughout processing production can be overcome to produce value-added chemicals by microalgal strains. In this study, we engineered cyanobacteria strains for the photosynthetic production of squalene and confirmed the continuous cultivation of CO2 and light conditions. The free-inducer system of gene expression was developed at the cyanobacterial strains. Then, the squalene production level and growth of the recombinant cyanobacteria were analyzed and discussed. For bio solar-cell factories, the ability to regulate genes based on the free-inducer gene expression system promotes metabolic engineering research and construction to produce value-added chemicals.

Detection of Geosmin Production Capability Using geoA Gene in Filamentous Cyanobacteria (Nostocales, Oscillatoriales) Strains (geoA 유전자를 이용한 사상형 남조류(Nostocales, Oscillatoriales)의 Geosmin 생성능 검출)

  • Ryu, Hui-Seong;Shin, Ra-Young;Seo, Kyung-Ae;Lee, Jung-Ho;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.661-668
    • /
    • 2018
  • Geosmin is volatile metabolites produced by a range of filamentous cyanobacteria which causes taste and odor problems in drinking water. Molecular ecological methods which target biosynthetic genes (geoA) are widely adopted to detect geosmin-producing cyanobacteria. The aim of this study was to investigate the potential production capability of 8 strains isolated from the Nakdong River. Ultimately, a suggestion for a genetical monitoring tool for the identification of geosmin producers in domestic waters was to be made. Geosmin was detected using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS) in two strains of Dolichospermum plactonicum (DGUC006, DGUC012) that were cultured for 28 day. The highest concentrations during the experiment period was $17,535ngL^{-1}$ and $14,311ngL^{-1}$ respectively. Additionally, geoA genes were amplified using two primers (geo78F/971R and geo78F/982R) from strains shown to produce geosmin, while amplification products were not detected in any of non-producing strains. PCR product (766 bp) was slightly shorter than the expected size for geosmin producers. According to the BLAST analysis, amplified genes were at nucleotide level with Anabaena ucrainica (HQ404996, HQ404997), Dolichospermum planctonicum (KM13400) and Dolichospermum ucrainicum (MF996872) between 99 ~ 100 %. Both strains were thus confirmed as potential geosmin-producing species. We concluded that the molecular method of analysis was a useful tool for monitoring potential cyanobacterial producers of geosmin.

HspA and HtpG Enhance Thermotolerance in the Cyanobacterium, Microcystis aeruginosa NIES-298

  • Rhee, Jae-Sung;Ki, Jang-Seu;Kim, Bo-Mi;Hwang, Soon-Jin;Choi, Ik-Young;Lee, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.118-125
    • /
    • 2012
  • Heat shock proteins (Hsps) play a key role in the cellular defense response to diverse environmental stresses. Here, the role of Hsp genes in the acquisition of thermotolerance in the cyanobacterium Microcystis aeruginosa NIES-298 was investigated. Twelve Hsp-related genes were examined to observe their modulated expression patterns at different temperatures (10, 15, 25, and $35^{\circ}C$) over different exposure periods. HspA and HtpG transcripts showed an up-regulation of expression at low temperatures (10 and $15^{\circ}C$) and high temperature ($35^{\circ}C$), compared with the control ($25^{\circ}C$). To examine their effects upon thermotolerance, we purified recombinant HspA and HtpG proteins. During a thermotolerance study at $54^{\circ}C$, the HspA-transformed bacteria showed increased thermotolerance compared with the control. HtpG also played a role in the defense response to acute heat stress within 30 min. These findings provide a better understanding of cellular protection mechanisms against heat stress in cyanobacteria.

Conserved Genes and Metabolic Pathways in Prokaryotes of the Same Genus (동일한 속 원핵생물들의 보존 유전자와 대사경로)

  • Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.123-128
    • /
    • 2019
  • The use of 16S rDNA is commonplace in the determination of prokaryotic species. However, it has limitations, and there are few studies at the genus level. We investigated conserved genes and metabolic pathways at the genus level in 28 strains of 13 genera of prokaryotes using the COG database (conserved genes) and MetaCyc database (metabolic pathways). Conserved genes compared to total genes (core genome) at the genus level ranged from 27.62%(Nostoc genus) to 71.76%(Spiribacter genus), with an average of 46.72%. The lower ratio of core genome meant the higher ratio of peculiar genes of a prokaryote, namely specific biological activities or the habitat may be varied. The ratio of common metabolic pathways at the genus level was higher than the ratio of core genomes, from 58.79% (Clostridium genus) to 96.31%(Mycoplasma genus), with an average of 75.86%. When compared among other genera, members of the same genus were positioned in the closest nodes to each other. Interestingly, Bacillus and Clostridium genera were positioned in closer nodes than those of the other genera. Archaebacterial genera were grouped together in the ortholog and metabolic pathway nodes in a phylogenetic tree. The genera Granulicella, Nostoc, and Bradyrhizobium of the Acidobacteria, Cyanobacteria, and Proteobacteria phyla, respectively, were grouped in an ortholog content tree. The results of this study can be used for (i) the identification of common genes and metabolic pathways at each phylogenetic level and (ii) the improvement of strains through horizontal gene transfer or site-directed mutagenesis.

Seasonal Variation of Phytoplakton and Phylogenetic Characteristics of Cyanotoxin synthetase genes within Youngsan River in Gwangju (광주지역 영산강 내 식물플랑크톤의 계절적 변동과 남조류 독소합성유전자의 계통발생학적 특성)

  • Haram Kim;Gwangwoon Cho;Gyeongrok Son;Dong, Jang;Gwangyeob Seo;Yunhee Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.315-328
    • /
    • 2023
  • Cyanobacteria have been used as pollution indicator species in freshwater ecosystems, and identifying their fluctuations can be an important part about management of surface waters globally. Cyanotoxins produced by cyanobacteria are directly or indirectly a threat to human and environmental health. In order to confirm the potential risk of these cyanotoxins, the fluctuations of phytoplankton and phylogenetic analysis of cyanotoxin synthetase genes were conducted at each point in the Yeongsan River water system in Gwangju from November 2021 to October 2022. Diatoms which grow well in winter were dominant at 99.4 ~ 99.5%, and diatoms and green algae were dominant from the spring to autumn when the water temperature rises. Stephanodiscus spp. were dominant at 92.7 to 97.5 % at all sites in the winter, and Aulacoseira spp., which grow in warm water temperatures, were dominant in summer and autumn. Microcystis aeruginosa was dominant at 25.2% in summer only at site 5. mcyB and anaC have been detected as cyanotoxin synthetase genes. The phylogenetic tree of anaC could be divided into two groups (Group 1 & Group 2). Group 1 contained Aphanizomenon sp. and Cuspidothrix issatschenkoi. It is combined with Aphanizomenon sp. and Cuspidothrix issatschenkoi, which are known to produce cyanotoxins.

Morphological and Molecular Analyses of $Anabaena$ $variabilis$ and $Trichormus$ $variabilis$ (Cyanobacteria) from Korea

  • Choi, Gang-Guk;Yoon, Sook-Kyung;Kim, Hee-Sik;Ahn, Chi-Yong;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.1
    • /
    • pp.54-63
    • /
    • 2012
  • This study characterizes three $Anabaena$ strains and 5 $Trichormus$ strains isolated from Korean waters and 3 $Anabaena$ $flos-aquae$ strains procured from the UTEX based on morphological features and molecular analyses. The $Anabaena$ and $Trichormus$ isolates were morphologically assigned to $A.$ $variabilis$ K$\ddot{u}$tzing and $T.$ $variabilis$(K$\ddot{u}$tzing ex Bornet et Flahault) Kom$\acute{a}$rek et Anagnostidis, respectively. The $Anabaena$ and $Trichormus$ strains differed significantly in the mean length of their vegetative cells. The 16S rRNA genes from the $Anabaena$ strains showed a 100% identity to that from $A.$ $variabilis$ ATCC 29413, while the 16S rRNA genes from the $Trichormus$ strains showed a 99.9% identity to that from $T.$ $variabilis$ GREIFSWALD. The overall topology was in agreement for the 16S rRNA gene and $cpcBA$-IGS trees in the both tree-constructing methods. In a neighbor-joining tree based on the 16S rRNA gene, the 3 $Anabaena$ strains were asso-ciated with $A.$ $variabilis$, the 5 $Trichormus$ strains with $T.$ $variabilis$, and the 3 $Anabaena$ (UTEX) strains were with $Nostoc$. To date, this is the first report on $A.$ $variabilis$ and $T.$ $variabilis$ strains originating from Korea.

Comparative Phenotypic Analysis of Anabaena sp. PCC 7120 Mutants of Porin-like Genes

  • Schatzle, Hannah;Brouwer, Eva-Maria;Liebhart, Elisa;Stevanovic, Mara;Schleiff, Enrico
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.645-658
    • /
    • 2021
  • Porins are essential for the viability of Gram-negative bacteria. They ensure the uptake of nutrients, can be involved in the maintenance of outer membrane integrity and define the antibiotic or drug resistance of organisms. The function and structure of porins in proteobacteria is well described, while their function in photoautotrophic cyanobacteria has not been systematically explored. We compared the domain architecture of nine putative porins in the filamentous cyanobacterium Anabaena sp. PCC 7120 and analyzed the seven candidates with predicted OprB-domain. Single recombinant mutants of the seven genes were created and their growth capacity under different conditions was analyzed. Most of the putative porins seem to be involved in the transport of salt and copper, as respective mutants were resistant to elevated concentrations of these substances. In turn, only the mutant of alr2231 was less sensitive to elevated zinc concentrations, while mutants of alr0834, alr4741 and all4499 were resistant to high manganese concentrations. Notably the mutant of alr4550 shows a high sensitivity against harmful compounds, which is indicative for a function related to the maintenance of outer membrane integrity. Moreover, the mutant of all5191 exhibited a phenotype which suggests either a higher nitrate demand or an inefficient nitrogen fixation. The dependency of porin membrane insertion on Omp85 proteins was tested exemplarily for Alr4550, and an enhanced aggregation of Alr4550 was observed in two omp85 mutants. The comparative analysis of porin mutants suggests that the proteins in parts perform distinct functions related to envelope integrity and solute uptake.