• Title/Summary/Keyword: Cyanoacrylic acid

Search Result 8, Processing Time 0.036 seconds

Synthesis and Characterization of Bis-Thienyl-9,10-anthracenes Containing Electron Withdrawing 2-Cyanoacrylic Acid or 2-Methylenemalononitrile Group

  • Wang, Yuan;Yu, Qu Feng;Park, Hea-Jung;Ryu, Suk-Hwa;Choi, Jung-Hei;Yoon, Ung-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3081-3089
    • /
    • 2011
  • A series of new bis-thienylanthracene derivatives D1~D5 containing 9,10-antharcene moiety in the center and 2-methylenemalonotitrile or 2-cyanoacrylic acid functional group on the terminal thiophenes were synthesized and characterized by $^1H$-NMR and high-resolution mass spectroscopy. Their optical, electrochemical, and thermal properties were measured. They have absorption ${\lambda}_{max}$ in the range of 437~480 nm and max of $7.4{\times}10^3{\sim}2.0{\times}10^4M^{-1}cm^{-1}$. The substitution of 2-cyanoacrylic acid group allows greater value of ${\varepsilon}_{max}$ than that of 2-methylenemalonotitrile. TGA curves showed that D4 and D5 which have 2-cyanoacrylic acid functional group on the terminal thiophene(s) exhibit good thermal stability and D4 was thermally stable up to $400^{\circ}C$. Their optical properties and LUMO energy levels measured suggest that they can serve as potential candidates for electron donor materials of organic photovoltaic cells (OPVs) or D4 and D5 which contain 2-cyanoacrylic acid group can be used as organic dyes of dye-sensitized solar cells (DSSCs).

Conformational Analysis and Electronic Properties of 2-Cyano-3-(thiophen-2-yl)acrylic Acid in Sensitizers for Dye-sensitized Solar Cells: A Theoretical Study

  • Balanay, Mannix P.;Kim, Se-Mi;Lee, Mi-Jung;Lee, Sang-Hee;Kim, Dong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2077-2082
    • /
    • 2009
  • The conformational and electronic properties of 2-cyano-3-(thiophen-2-yl)acrylic acid (TCA) in analogues used as sensitizers in dye-sensitized solar cells was examined using density functional theory (DFT) and natural bond orbital analysis methods. A relaxed potential energy surface scan was performed on NKX-2677 by rotating the C-C bond between the thiophene and cyanoacrylic acid which yielded activation energy barriers of about 13 kcal/mol for both E and Z configurations. The most stable conformation of all the analogues was E-180 except for NKX-2587 which has an electrostatic repulsion between the oxygen of the coumarin and the nitrogen of the cyanoacrylic acid. The increase in the electron delocalization between the thiophene and cyanoacrylic acid influences the stability for most of the analogues. But for NKX-2600, even though there was a greater deviation from the planarity of TCA, the stability was mainly due to the presence of a weak hydrogen bond between the hydrogen of the methyl group of the amine located in the donor moiety and the nitrogen of the cyanoacrylic acid. The vertical excitation energies of the analogues containing TCA were calculated by time-dependent DFT method. There were slight differences in its vertical excitation energies but the oscillator strengths vary significantly especially in the case of NKX-2600.

Synthesis of Organic Dyes with Linkers Between 9,9-Dimethylfluorenyl Terminal and α-Cyanoacrylic Acid Anchor, Effect of the Linkers on UV-Vis Absorption Spectra, and Photovoltaic Properties in Dye-Sensitized Solar Cells

  • Lee, Min-Woo;Cha, Su-Bong;Yang, Su-Jin;Park, Se-Woong;Kim, Kyung-Kon;Park, Nam-Gyu;Lee, Duck-Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2269-2279
    • /
    • 2009
  • Six metal-free organic dyes having thiophene (1), benzene-thiophene (2), thiophene-benzene (3), thiophene-pyridine (4), thiophene-thiophene (5), and pyridine (6) linkers between 9,9-dimethylfluorenyl terminal group and $\alpha$-cyanoacrylic acid anchor were synthesized. Among them, organic dye 5 showed the longest ${\lambda}_{max}$ value (424 nm) in UV-Vis absorption spectrum, better incident monochromatic photon-to-current conversion efficiency (IPCE), highest short circuit photocurrent density ($J_{SC},\;9.33\;mA^2/cm^2$), and highest overall conversion efficiency ($\eta$, 3.91%).

Effect of the Linkers Between 9,9-Dimethylfluorenyl Terminal Moiety and a-Cyanoacrylic Acid Anchor on the $\lambda_{max}$ of the UV Spectrum and the Energy Efficiency in Dye-Sensitized Solar Cell (DSSC)

  • Lee, Min-U;Cha, Su-Bong;Lee, Jeong-Ryeol;Park, Se-Ung;Kim, Gyeong-Gon;Park, Nam-Gyu;Lee, Deok-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.316-316
    • /
    • 2010
  • Six metal-free organic dyes having thiophene (1), benzene-thiophene (2), thiophene-benzene (3), thiophene-pyridine(4), thiophene-thiophene (5), and pyridine (6) linkers between 9,9-dimethylfluorenyl terminal group and $\alpha$-cyanoacrylic acid anchor were synthesized. Among them, organic dye 5 showed the longest ${\lambda}}max$ value (424 nm) in UV-Vis absorption spectrum, better incident monochromatic photon-to-current conversion efficiency (IPCE), highest short circuit photocurrent density (JSC, 9.33 mA2/cm2), and highest overall conversion efficiency ($\eta$, 3.91%).

  • PDF

Quantum Chemical Designing of Novel Organic Non-Linear Optical Compounds

  • Mahmood, Asif;Abdullah, Muhammad Imran;Nazar, Muhammad Faizan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1391-1396
    • /
    • 2014
  • In the present study, ten metal free non-linear optical (NLO) compounds have been designed. These compounds have designed by structural modification of (2-cyano-5-(4-(phenyl(4-vinylphenyl)amino)phenyl) penta-2,4-dienoic acid (TC4). Density functional theory was used for structure optimization and determination of photo-physical properties. These compounds contain triphenylamine as electron-donor and cyanoacrylic acid as acceptor. Five ${\pi}$-spacers are used to connect the donor and acceptor. Two auxiliary donors are also used to assist the donor. Results of this study indicate that stronger electron-donating auxiliary groups and longer ${\pi}$-conjugation enhance NLO response. Major absorption peaks of all systems were in the visible region. These absorption peaks are associated with the ${\pi}-{\pi}^*$ transitions of the entire molecule. From calculations it is clear that all system will be good NLO material. The present calculations will provide new ways for experimentalists to synthesize high-performance NLO material.

Infrared Spectroscopic Study of α-Cyano-4-hydroxycinnamic Acid on Nanocrystalline TiO2 Surfaces: Anchoring of Metal-Free Organic Dyes at Photoanodes in Dye-Sensitized Solar Cells

  • Dembereldorj, Uuriintuya;Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.116-119
    • /
    • 2010
  • Adsorption structures of the self-assembled thin films of $\alpha$-cyano-4-hydroxycinnamic acid (CHCA) anchoring on $TiO_2$ surfaces have been studied by using temperature-dependent diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy. From the presence of the strong $\nu(COO^-)$ band at ~1390 $cm^{-1}$ along with the disappearance of the OH bands in the carboxylic acid group in the DRIFT spectra at room temperature, CHCA appeared to adsorb onto $TiO_2$ surfaces as a carboxylate form. The absence of the out-of-plane benzene ring modes of CHCA in the DRIFT spectra suggests a rather vertical orientation of CHCA on $TiO_2$. Above ~220$ ^{\circ}C$, CHCA seemed to start to thermally degrade on $TiO_2$ surfaces referring from the disappearance of most vibrational modes in the DRIFT spectra, whereas the $\nu$(C ≡ N) bands were found to remain relatively conspicuous as the temperature increased even up to ~460$^{\circ}C$.

Synthesis of Novel Quinacridone Dyes and Their Photovoltaic Performances in Organic Dye-sensitized Solar Cells

  • SaKong, Chun;Kim, Se-Hun;Yuk, Sim-Bum;Kim, Jeong-Yun;Park, Se-Woong;Ko, Min-Jae;Kim, Jae-Pil
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2553-2559
    • /
    • 2011
  • Two novel quinacridone (QNC) dyes with thiophene or benzene-conjugated bridge and cyanoacrylic acid acceptor were first designed and synthesized for use in dye-sensitized solar cells (DSSCs). The absorption spectra, electrochemical and photovoltaic properties of these dyes were investigated. Under simulated AM 1.5G irradiation conditions, the solar cell based on the quinacridone dye containing thiophene as a bridge unit had a short-circuit photocurrent density of 8.51 $mA{\cdot}cm^{-2}$, an open-circuit voltage of 643.6 mV, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 3.86%.

Organic Sensitizers based on Bis-carbazole for Dye-Sensitized Solar Cells (비스-카바졸 유기염료를 이용한 염료감응태양전지)

  • Kim, Hyo-Jeong;Byun, Yeo-Jin;Nam, Jung-Eun;Kim, Dae-Hwan;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.397-399
    • /
    • 2012
  • Dye-sensitized solar cells (DSSCs) have received considerable attention as the most promising candidates for renewable energy systems in recent years. Among these, organic dyes which have many advantages such as large absorption coefficients, customized molecular design for desired photophysical and photochemical properties, inexpensiveness and environment-friendliness, are suitable as photosensitizers for DSSCs. We have studied on the design and synthesis of two organic dyes (BECZ 1 and BECZ 2) with a 9-ethyl-9H-carbazole core for dye-sensitized solar cells (DSSCs). Two organic dyes comprised of two 9-ethyl-9H-carbazole moiety as electron-donor, two types of cyanoacrylic acid moiety acting as acceptor. In addition, n-ethyl unit introduced for increasing the solubility and the donating power. The obtained organic dyes were comprehensively characterized by NMR, GC-MS, FAB-MS and UV/Vis spectroscopies. DSSCs sensitized by the dyes BECZ1 and BECZ2 produced ${\eta}$ value 3.31% and a ${\eta}$ value 3.21%.

  • PDF