DOI QR코드

DOI QR Code

Synthesis of Novel Quinacridone Dyes and Their Photovoltaic Performances in Organic Dye-sensitized Solar Cells

  • SaKong, Chun (Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Se-Hun (Department of Materials Science and Engineering, Seoul National University) ;
  • Yuk, Sim-Bum (Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Jeong-Yun (Department of Materials Science and Engineering, Seoul National University) ;
  • Park, Se-Woong (Solar Cell Research Center, Materials Science and Technology Division, Korea Institute of Science and Technology (KIST)) ;
  • Ko, Min-Jae (Solar Cell Research Center, Materials Science and Technology Division, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Jae-Pil (Department of Materials Science and Engineering, Seoul National University)
  • Received : 2011.03.08
  • Accepted : 2011.06.13
  • Published : 2011.08.20

Abstract

Two novel quinacridone (QNC) dyes with thiophene or benzene-conjugated bridge and cyanoacrylic acid acceptor were first designed and synthesized for use in dye-sensitized solar cells (DSSCs). The absorption spectra, electrochemical and photovoltaic properties of these dyes were investigated. Under simulated AM 1.5G irradiation conditions, the solar cell based on the quinacridone dye containing thiophene as a bridge unit had a short-circuit photocurrent density of 8.51 $mA{\cdot}cm^{-2}$, an open-circuit voltage of 643.6 mV, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 3.86%.

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Gratzel, M. Nature 2001, 414, 338. https://doi.org/10.1038/35104607
  3. Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L. Jpn. J. Appl. Phys. 2006, 45, L638. https://doi.org/10.1143/JJAP.45.L638
  4. Nazeeruddin, M. K.; Angelis, F. D.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. https://doi.org/10.1021/ja052467l
  5. Wang, Z.-S.; Yamaguchi, T; Sugihara, H.; Arakawa, H. Langmuir 2005, 21, 4272. https://doi.org/10.1021/la050134w
  6. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Gratzel, M. Nat. Mater. 2003, 2, 402. https://doi.org/10.1038/nmat904
  7. Mishra, A.; Fischer, M. K.; Bauerle, P. Angew. Chem., Int. Ed. 2009, 48, 2474. https://doi.org/10.1002/anie.200804709
  8. Labana, S. S.; Lababa, L. L. Chem. Rew. 1967, 67, 1. https://doi.org/10.1021/cr60245a001
  9. Herbst, W.; Hunger, K. Industrial Pigments; VCH: Weinheim, 1993; 447.
  10. Lincke, G. Dyes and Pigments 2002, 52, 169. https://doi.org/10.1016/S0143-7208(01)00085-7
  11. Manabe, K.; Kusabayashi, S.; Yokoyama, M. Chem. Lett. 1987, 609.
  12. Marco, P. D.; Fattori, V.; Giro, G.; Kalinowski, J. Mol. Cryst. Liq. Cryst. 1992, 217, 223. https://doi.org/10.1080/10587259208046905
  13. Tsutsui, T.; Aminaka, E.; Fujita, Y.; Hamada, Y.; Saito, S. Synth. Met. 1993, 57, 4157. https://doi.org/10.1016/0379-6779(93)90574-G
  14. Shi, J.; Tang, C. W. Appl. Phys. Lett. 1997, 70, 1665. https://doi.org/10.1063/1.118664
  15. Jabbour, G. E.; Kawabe, Y.; Shaheen, S. E.; Wang, J. F.; Morrell, M. M.; Kippelen, B.; Peyghambarian, N. Appl. Phys. Lett. 1997, 71, 1762. https://doi.org/10.1063/1.119392
  16. Feyter, S. D.; Gesquiere, A.; Schryver, F. C. D.; Keller, U.; Mullen, K. Chem. Mater. 2002, 14, 989. https://doi.org/10.1021/cm011053y
  17. Mu, Z.; Wang, Z.; Zhang, X.; Ye, K.; Wang, Y. J. Phys. Chem. B 2004, 108, 19955. https://doi.org/10.1021/jp046942y
  18. Yang, X.; Mu, Z.; Wang, Z.; Zhang, X.; Wang, J.; Wang, Y. Langmuir 2005, 20, 7225.
  19. Ortiz, A.; Flora, W. H.; D'Ambruoso, G. D.; Armstrong, N. R.; McGrath, D. V. Chem. Commun. 2005, 444.
  20. Liu, J.; Gao, B.; Cheng, Y.; Xie, Z.; Geng, Y.; Wang, L.; Jing, X.; Wang, F. Macromolecules 2008, 41, 1162. https://doi.org/10.1021/ma071235z
  21. Sakong, C.; Kim, Y. D.; Choi, J.-H.; Yoon, C.; Kim, J. P. Dyes and Pigments 2011, 88, 166. https://doi.org/10.1016/j.dyepig.2010.06.003
  22. Liu, P. H.; Tian, H.; Chang, C. P. J. Photochem. Photobiol. A 2000, 137, 99. https://doi.org/10.1016/S1010-6030(00)00361-0
  23. Smith, J. A.; West, R. M.; Allen, M. J. Fluoresc. 2004, 14, 151. https://doi.org/10.1023/B:JOFL.0000016287.56322.eb
  24. Marson, C. M. Tetrahedron 1992, 48, 3659. https://doi.org/10.1016/S0040-4020(01)92263-X
  25. Smith, J. A. inventor; GE Healthcare UK Limited, assignee. United States Patent US 7335771. 2008 Feb 26.
  26. Pomel, V.; Klicic, J.; Covini, D.; Church, D. D.; Shaw, J. P.; Roulin, K.; Burgat-Charvilon, F.; Valognes, D.; Camps, M.; Chabert, C.; Gillieron, C.; Francon, B.; Perrin, D.; Leroy, D.; Gretener, D.; Nichols, A.; Vitte, P. A.; Carboni, S.; Rommel, C.; Schwarz, M. K.; Rückle, T. J. Med. Chem. 2006, 49, 3857. https://doi.org/10.1021/jm0601598
  27. Roquet, S.; Cravino, A.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J. J. Am. Chem. Soc. 2006, 128, 3459. https://doi.org/10.1021/ja058178e
  28. Thomas, K. R. J.; Hsu, Y. C.; Lin, J. T.; Lee, K. M.; Ho, K. C.; Lai, C. H.; Cheng, Y. M.; Chou, P. T. Chem. Mater. 2008, 20, 1830. https://doi.org/10.1021/cm702631r
  29. Morley, J. O.; Push, D. J. Chem. Soc. Faraday Trans. 1991, 87, 3021. https://doi.org/10.1039/ft9918703021
  30. Wu, I. Y.; Lin, J. T.; Li, C. S.; Tsai, C.; Wen, Y. S.; Hsu, C. C.; Yeh, F. F.; Liou, S. Organometallics 1998, 17, 2188. https://doi.org/10.1021/om970947i
  31. March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, U.S.A., 1992; p 45.
  32. Ramakishna, G.; Ghosh, H. N. J. Phys. Chem. A 2002, 106, 2545. https://doi.org/10.1021/jp013803x
  33. Wu, W.; Yang, J.; Hua, J.; Tang, J.; Zhang, L.; Long, Y.; Tian, H. J. Mater. Chem. 2010, 20, 1772. https://doi.org/10.1039/b918282a
  34. Hwang, S.; Lee, J. H.; Park, C.; Lee, H.; Kim, C.; Park, C.; Lee, M. H.; Lee, W.; Park, J.; Kim, K.; Park, N. G.; Kim, C. Chem. Commun. 2007, 4887.
  35. Hara, K.; Tachibana, Y.; Ohga, Y.; Shinpo, A.; Sugab, S.; Sayamaa, K.; Sugihara, H.; Arakawa, H. Sol. Energy Mater. Sol. Cells 2003, 77, 89. https://doi.org/10.1016/S0927-0248(02)00460-9
  36. Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597. https://doi.org/10.1021/jp026963x
  37. Kuang, D.; Walter, P.; Nuesch, F.; Kim, S.; Ko, J.; Comte, P.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gratzel, M. Langmuir 2007, 23, 10906. https://doi.org/10.1021/la702411n
  38. Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. J. Org. Chem. 2007, 72, 9550. https://doi.org/10.1021/jo701592x
  39. Tae, E. L.; Lee, S. H.; Lee, J. K.; Yoo, S. S.; Kang, E. J.; Yoon, K. B. J. Phys. Chem. B 2005, 109, 22513. https://doi.org/10.1021/jp0537411
  40. Li, C.; Yang, X.; Chen, R.; Pan, J.; Tian, H.; Zhu, H.; Wang, X.; Hagfeldt, A.; Sun, L. Sol. Energy Mater. Sol. Cells 2007, 91, 1863. https://doi.org/10.1016/j.solmat.2007.07.002
  41. Ferrere, S.; Zaban, A.; Gregg, B. A. J. Phys. Chem. B 1997, 101, 4490. https://doi.org/10.1021/jp970683d
  42. Ferrere, S.; Gregg, B. A. J. Phys. Chem. B 2001, 105, 7602. https://doi.org/10.1021/jp011612o
  43. Ferrere, S.; Gregg, B. A. New J. Chem. 2002, 26, 1155. https://doi.org/10.1039/b203260k
  44. Shibano, Y.; Umecyama, T.; Matano, Y.; Imahori, H. Org. Lett. 2007, 9, 1971. https://doi.org/10.1021/ol070556s
  45. Fortage, J.; Séverac, M.; Houarner- Rassin, C.; Pellegrin, Y.; Blart, E.; Odobel, F. J. Photochem. Photobiol. A 2008, 197, 156. https://doi.org/10.1016/j.jphotochem.2007.12.034
  46. Jin, Y.; Hua, J.; Wu, W.; Ma, X.; Meng, F. Synth. Met. 2008, 158, 64. https://doi.org/10.1016/j.synthmet.2007.12.005

Cited by

  1. Efficient and stable organic DSSC sensitizers bearing quinacridone and furan moieties as a planar π-spacer vol.22, pp.46, 2012, https://doi.org/10.1039/c2jm31929b
  2. Effects of Exciton Polarity in Charge-Transfer Polymer/PCBM Bulk Heterojunction Films vol.5, pp.11, 2014, https://doi.org/10.1021/jz5005957
  3. Sensitizers with rigidified-aromatics as the conjugated spacers for dye-sensitized solar cells vol.3, pp.38, 2015, https://doi.org/10.1039/C5TC02356D
  4. Quinacridone-based π-conjugated electronic materials vol.4, pp.42, 2016, https://doi.org/10.1039/C6TC03621J
  5. Structural effect of carbazole-based coadsorbents on the photovoltaic performance of organic dye-sensitized solar cells vol.1, pp.32, 2011, https://doi.org/10.1039/c3ta11508a
  6. A comprehensive spectral, photophysical and electrochemical study of synthetic water-soluble acridones. A new class of pH and polarity sensitive fluorescent probes vol.166, pp.None, 2011, https://doi.org/10.1016/j.dyepig.2019.03.028
  7. Enhanced photoelectric and photocatalysis performances of quinacridone derivatives by forming D-π-A-A structure vol.201, pp.None, 2011, https://doi.org/10.1016/j.solener.2020.03.053
  8. An electron rich indaceno [2,1-b:6,5-b′] dithiophene derivative as a high intramolecular charge transfer material in dye sensitized solar cells vol.45, pp.5, 2011, https://doi.org/10.1039/d0nj06067d