• 제목/요약/키워드: Cyanides

검색결과 25건 처리시간 0.022초

UV Light Induced Photocatalytic Degradation of Cyanides in Aqueous Solution over Modified $TiO_2$

  • 김형주;김재현;이청학;현택환;최원용;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권12호
    • /
    • pp.1371-1374
    • /
    • 2001
  • Metal doping was adopted to modify TiO2 (P-25) and enhance the photocatalytic degradation of harmful cyanides in aqueous solution. Ni, Cu, Co, and Ag doped TiO2 were found to be active photocatalysts for UV light induced degradation of aqueous cyanides generating cyanate, nitrate and ammonia as main nitrogen-containing products. The photoactivity of Ni doped TiO2 was greatly affected by the state of Ni, that is, the crystal size and the degree of reduction of Ni. The modification effects of some mixed oxides, that is, Ni-Cu/TiO2 were also studied. The activity of Ni-Cu/TiO2 for any ratio of Cu/Ni was higher than that of Ni- or Cu-doped TiO2, and the catalyst at the Cu/Ni ratio of 0.3 showed the highest activity for cyanide conversion.

충전형 저온 플라즈마 반응기에서 시안 화합물의 분해 특성 (Decomposition Characteristics of Cyano-compounds in Non-thermal Packed-Bed-Plasma-Reactor)

  • 류삼곤;박명규;이해완
    • Korean Chemical Engineering Research
    • /
    • 제50권2호
    • /
    • pp.343-347
    • /
    • 2012
  • 충전형 저온 플라즈마 반응기 내에서의 가스 상 시안화합물의 분해특성을 반응기로 투입되는 방전 전력, 시안화합물의 유입농도, 운반기체인 공기의 습도 및 반응기 내의 충전물질 등을 변수로 연구하였다. 저온플라즈마 방전의 경우 시안화합물들의 분해는 트리클로로에틸렌에 비하여 상대적으로 매우 낮은 효율을 보였다. 그러나 플라즈마 방전 영역에 알루미나 또는 백금/알루미나 구슬을 충전한 경우 분해효율이 크게 높아졌으며 이는 플라즈마 반응과 더불어 백금/알루미나의 촉매작용에 의한 촉매 반응이 동시에 작용함에 기인한 것으로 판단된다.

S. cerevisiae를 이용한 시안센서의 개발 (Development of Cyanide Sensor Using S. cerevisiae)

  • 김종민;이현우
    • KSBB Journal
    • /
    • 제11권6호
    • /
    • pp.669-675
    • /
    • 1996
  • 간단한 조작으로 시안화물을 신속하게 계측할 수 있는 센서의 개발을 목적으로 하여 미생물과 산소전극을 이용한 시안센서의 개발을 연구하였다. 산소전극에 S. cerevisiae를 흡착 고정화한 막을 부착하여 막형 시안센서를 제작하고 시료용액중의 시 안이온농도를 O~1.00ppm이 되게 시안을 첨가하면 서 전류값 변화를 살펴본 결과 시안농도 0.10~1.00ppm의 범위에서 응답이 확인되었으며 고정화 직후의 호흡활성은 약 하루정도 유지되었다. S. ceremSlae를 고정화한 키토-펼 HP-5020을 사용하여 반응기형 시안센서를 제작하고 막형 시안센서와 동일하게 시안이온농도 O~1.00ppm 용액의 전 류값 변화를 살펴본 결과 0.10~ 1.00ppm의 범위에서 응답이 확인되었으며 고정화 직후 90%의 호흡활 성이 16일간 유지되었다. 반응기형 시안샌서의 반응기 크기의 영향을 검토 한 결과, 반응기의 최적 체적이 존재한다는 사실을 알 수 있었다.

  • PDF

Ion-Sensitive Field Effect Transistor-Based Multienzyme Sensor for Alternative Detection of Mercury ions, Cyanide, and Pesticide

  • Vyacheslav, Volotovskky;Kim, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.373-377
    • /
    • 2003
  • Various groups of industrial and agricultural pollutants (heavy metal ions, cyanides, and pesticides) can be detected by enzymes. Since heavy metal ions inhibit urease, cyanides inhibit peroxidase, organophosphorus and carbamate pesticides inhibit butyrylcholinesterase, these enzymes were co-immobilized into a bovine serum albumin gel on the surface of an ion-sensitive field effect transistor to create a bioprobe that is sensitive to the compounds mentioned above. The sensitivity of the present sensor towards KCN corresponded to $1\;\mu\textrm{M}$ with 1 min of incubation time. The detection limits for Hg(II) ions and the pesticide carbofuran were 0.1 and $0.5\;\mu\textrm{M}$, respectively, when a 10 min sensor incubation time in contaminated samples was chosen. The total time for determining the concentrations of all species mentioned did not exceed 20 min.

화학적 질식제 -청화물과 황화수소를 중심으로 (Chemical Asphyxiants - Cyanides and Hydrogen Sulfides)

  • 김양호;최영희;이충렬;이지호;유철인;이 현
    • 대한임상독성학회지
    • /
    • 제1권1호
    • /
    • pp.12-20
    • /
    • 2003
  • Cyanides and hydrogen sulfide ($H_2S$) are major chemical asphyxiants. They have common mechanism of action which inhibit cellular respiration and induce histotoxic hypoxia. They do not generate ATP, and all processes dependent on ATP are stopped. No extraction of $O_2$ from blood decreases AV $O_2$ differences, and the shift to anaerobic glycolysis brings about lactic acidosis with high anion gap. The mainstay of the treatment is rapid treatment with appropriate use of antidotes. However, there are several differences between cyanides and $H_2S$. First, $H_2S$ is not metabolized by enzymes such as thiosulfate. Thus thiosulfate does not play any role in treatment of $H_2S$. Second, $H_2S$ is a more potent inhibitor of cytochrome aa3 than cyanide. Third, $H_2S$ induces more divergent neurologic sequele than cyanide. Finally, $H_2S$ is not absorbed via skin.

  • PDF

Chemical Active Liquid Membranes in Inorganic Supports for Metal Ion Separations

  • Yi, Jongheop
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1994년도 추계 총회 및 학술발표회
    • /
    • pp.8-11
    • /
    • 1994
  • Disposal of hazardous ions in the aqueous streams is a significant industrial waste problem.. Waste streams from electronics, electroplating, and photographic industries contain metal ions such as copper, nickel, zinc, chromium(IV), cadmium, aluminum, silver, and gold, amongst others in various aqueous solutions such as sulfates, chlorides, fluorocarbons, and cyanides. Typical plating solutions having similar compositions are listed in Table 1. Spent process streams in catalyst manufacturing facilities also contain precious metals such as Ag, Pt, and Pd. Developing an effective recovery process of these metal ions for reuse is important.

  • PDF

Ecotoxicity Estimation of Hazardous Air Pollutants Emitted from Semiconductor Manufacturing Processes Utilizing QSAR

  • Park, Hyung-Geun;Yeo, Min-Kyeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3755-3761
    • /
    • 2013
  • This study aims to assess the ecological risk of the hazardous air pollutants (HAPs) emitted in the semiconductor manufacturing processes in Korea by using Quantitative Structure Activity Relationship (QSAR, EPA, US, EPI $Suite^{TM}$ 4.1). Owing to the absence of environmental standards of hazardous air pollutants in the semiconductor manufacturing processes in Korea, 18 HAPs in the semiconductor field included in both the US EPA NESHAPs and the hazardous air pollutant list of Ministry of Environment in Korea were selected. As a results 8 chemicals (44.4%) of the selected 18 HAPs were VOCs. Cyanides (cyanides) and ethylene oxides (epoxy resins), and tetrachloro-ethylene (aliphatic compounds, halides) showed long half-lives. Cyanide HAPs especially had the highest half-life with the estimated value of 356.533 days. Nickel compounds (heavy metal compounds) possessed the highest water solubility followed by acetaldehyde (aldehyde compounds), ethylene oxides, and 1,4-dioxanes. The halides, including tetrachloro-ethylenes, carbon tetra-chlorides, benzene (aromatic compounds), and lead (heavy metals), are estimated to take the longest time for biodegradation. Tetrachloroethylene, with the acute toxicity end point of 3.685-7.033 mg/L, was assessed to be the most highly toxic substance among the 18 HAPs. However, considering the absence of the HAPs in the common category of log $K_{ow}{\geq}4$and $BCF{\geq}500$, which indicates the standard of bioconcentration potentials, potentials of the bioconcentration are considered to be low.