• Title/Summary/Keyword: Cyanex 572

Search Result 4, Processing Time 0.015 seconds

Solvent Extraction of Rare Earth Elements (La, Ce, Pr, Nd, Sm) from Hydrochloric Acid Solutions using Cyanex 572 (염산용액에서 Cyanex 572에 의한 희토류 원소(La, Ce, Pr, Nd, Sm)의 용매추출)

  • Cho, Yeon-Chul;Kang, Myeong-Sik;Ahn, Jae-Woo;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.50-57
    • /
    • 2016
  • This work was examined the extraction and stripping behavior of rare earths (La, Ce, Pr, Nd, Sm) from the hydrochloric acid solution by Cyanex 572 and compared to the results that of PC88A. Experimental parameters such as equilibrium pH, extractant & strip reagent concentration were observed and extraction percentage, distribution coefficient, stripping percentage and the separation factor of the adjacent element were analyzed. The $pH_{50}$ values was more higher using Cyanex 572 than that of PC88A. As the increase of the extractant concentration, the distribution coefficient of rare earth elements was increased. Stripping percentage of rare earth elementss from the Cyanex 572 was 85% to 95% and PC88A showed 80% to 87%. Separation factor of Ce/La, Ce/Pr, Pr/Nd, Nd/Sm was enhanced about 1.0-5.0 using Cyanex 572 as an extractant in mixture solution.

Extraction & Separation Behavior of Light Rare Earth Elements from the Mixed Solutions by Cyanex 572 (경희토류(La, Ce, Pr, Nd, Sm) 혼합용액에서 Cyanex 572에 의한 추출·분리 거동 고찰)

  • Cho, Yeon-Chul;Lee, Joo-Eun;So, Hong-Il;Ahn, Jae-Woo;Kim, Hong-In;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.79-87
    • /
    • 2017
  • Extraction and separation behaviors of La, Ce, Pr, Nd and Sm from light rare earth multi - component mixed solutions by Cyanex 572 were studied. As extractant concentration increased, the $pH_{50}$ values of all the five components decreased. When extractant concentration was larger than 0.6 M, the separation factor of La and Ce, Nd and Sm was higher than 10, while the separation factor between Ce and Pr, Pr and Nd was as low as 0.5~2.2. Addition of TBP to the 0.6 M Cyanex 572 had little synergistic effect on the phase separation rate and separation factor. From the analysis of experiment results, group separation of [La]/[Pr, Nd, Sm] and [Pr, Nd]/[Sm] could be possible, but in case of the group separation between [La, Ce] and [Pr, Nd] was not available because of the low separation factor between Ce and Pr.

Design of Counter current Extraction Process for the Separation of [Pr, Nd, Sm]/[La] using Cyanex 572 (Cyanex 572를 사용하여 [Pr, Nd, Sm]/[La]분리에 대한 향류추출공정 설계)

  • Lee, Joo-eun;So, Hong-Il;Jang, In-Hwan;Ahn, Jae-Woo;Kim, Hong-in;Lee, Jin-young
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.50-56
    • /
    • 2018
  • For the purpose of optimizing the counter current extraction process for separation of [Pr, Nd, Sm] group and [La] in mixed solution using Cyanex 572 as an extractant, the theory of Xu Guangxian was derived for calculating the optimized extraction factors. From the basic batch test result, the separation factor was 16.80 at extraction process and 21.48 at scrubbing process, and the loading capacity of 1.0 M Cyanex 572 was 0.12 M of rare earth element. The process parameters such as the stage number at extraction and scrubbing process, the flow rate ratio of feed and solvent solution can be calculated using an equation of optimum extraction ratio proposed by Xu Guangxian. From the result of calculation, 7 extraction stages and 4 scrubbing stages were required for rare earth separation, and the flow rate ratio of feed solution, solvent solution, scrubbing solution was 25 : 5.67 : 12.27.

Calculation of Countercurrent Extraction Process for Separation of [Sm]/[Pr, Nd] in Hydrochloric Acid Solution using Cyanex 572 (염산용액에서 Cyanex 572를 사용하여 [Sm]/[Pr, Nd] 분리를 위한 향류추출 공정변수 계산)

  • Lee, Joo-eun;So, Hong-il;Jang, In-hwan;Ahn, Jae-woo;Kim, Hong-in;Lee, Jin-young
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.69-76
    • /
    • 2018
  • For the purpose of optimizing the counter current extraction process for separation of [Sm] and [Pr, Nd] group in hydrochloric acid solution using Cyanex 572 as an extractant, the theory of Xu Guangxian was derived for calculating the optimized extraction factors. From the basic batch test result, the separation factor of [Sm]/[Pr, Nd] was 14.59 at pH 1.75 in extraction process and 14.61 at 0.01 M HCl in scrubbing process. The process parameters can be calculated using a theory of optimum extraction ratio. From the result of calculation, the total extraction and scrubbing stage numbers at counter current process were 11 and for maintain extraction ratio the flow rate ratio of feed solution, solvent solution, scrubbing solution was 6.25 : 1.74 : 5.80 using 0.1 M HCl.