• Title/Summary/Keyword: Cutting wear

Search Result 679, Processing Time 0.025 seconds

Complex analysis of rock cutting with consideration of rock-tool interaction using distinct element method (DEM)

  • Zhang, Guangzhe;Dang, Wengang;Herbst, Martin;Song, Zhengyang
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.421-432
    • /
    • 2020
  • Cutting of rocks is very common encountered in tunneling and mining during underground excavations. A deep understanding of rock-tool interaction can promote industrial applications significantly. In this paper, a distinct element method based approach, PFC3D, is adopted to simulate the rock cutting under different operation conditions (cutting velocity, depth of cut and rake angle) and with various tool geometries (tip angle, tip wear and tip shape). Simulation results showed that the cutting force and accumulated number of cracks increase with increasing cutting velocity, cut depth, tip angle and pick abrasion. The number of cracks and cutting force decrease with increasing negative rake angle and increase with increasing positive rake angle. The numerical approach can offer a better insight into the rock-tool interaction during the rock cutting process. The proposed numerical method can be used to assess the rock cuttability, to estimate the cutting performance, and to design the cutter head.

The relation of TiN coating condition of end-mill and cutting force increase rate (엔드밀의 TiN 코팅조건과 절삭력 증가율과의 관계)

  • 최석우;이위로;최광진;백영남
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.4
    • /
    • pp.337-341
    • /
    • 2001
  • TiN coating of high speed end mill is recently generalized. The study of coating layer using ion plating is mainly about the coating method and the why of the longer life of coated tools. In CNC machning process, metal cutting isn't carry out until the tools including the end-mill and so on are fractured. Namely, it is difficult precision processing when the cutting force of the cutting tool is near the limit the fracture cutting force. So, the estimate of the life by wear and fracture is important. Therefore, this study is about the method to estimate the capacity of the coating layer in relation to the tendency of cutting force and the influence of the cutting capacity of coated end-mill by the condition N2, Ar, temperature. The cutting length is in inverse proportion to the cutting force ratio. So, the life of the TiN coated end mill can be predicated by the ratio of the increase of the cutting force.

  • PDF

The Evaluation of PVD Coated HSS Endmill (HSS엔드밀의 PVD코팅 및 성능평가)

  • Lee, Sang-Seog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.4
    • /
    • pp.103-109
    • /
    • 2012
  • To enhance the cutting performance of high speed steel(HSS) endmill, single and multilayer coating is applied on the substrated of the HSS endmill. Coating material reduces cutting force and enhances resistance against abrasive wear. This paper presents the physical vapour deposition(PVD) coating technology and evaluate the PVD coated HSS endmill. The performance of coated HSS endmills are fifteen times better than uncoated HSS endmill on proposed cutting conditions. The TiAlN monolayer coated endmills(futura nano coating) are better than those of multilayer coated endmills(futura coating) on machined surface and tool wear.

Cutting method of tungsten carbide material using hot machining (고온가공기법을 이용한 초경소재 가공기술)

  • 이채문;이득우;정우섭;김상기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.365-369
    • /
    • 2004
  • The Advantages of hot machining are the reduction of cutting forces, tool wear, and the increase of material removal rates. In this study, a hot-machining using gas flame heating characteristics of milling by CBN tip was analyzed, and the influence of the surface temperature and the depth of cut on the tool life were investigated. The results show that hot machining of tungsten carbide-alloyed is more effective than conventional machining. In addition, some advantages obtained from hot machining, such as decrease of tool wear and cutting force, high surface quality.

  • PDF

Study on the Machining Characteristics of Cutting Inserts (밀링용 인서트의 가공특성에 관한 연구)

  • Cho, Jun-Hyun;Hwang, In-Hwan;Park, Sang-Hyun;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.76-80
    • /
    • 2013
  • This paper reports some experimental results on the machining performance of ground & non-ground milling inserts. Five kinds of milling inserts were manufactured without grinding process and one milling insert was manufactured with grinding process. Machining experiments were carried out to compare the performance of ground & non-ground inserts. This experimental result indicate that tool wear, cutting force and surface roughness of the each tool. From the result five milling inserts that have non-grinding process and one milling insret that have grinding process compared appear.

A Study on the Diamond Wheel Wear in Ceramic Grinding (세라믹 연삭에서 다이아몬드 숫돌 마멸에 관한 연구)

  • 공재향;유봉환;소의열;이근상;유은이
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.344-348
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness after using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous grinding of ceramics, cutting edge ratio of resinoid bond wheel decreases. For the case of vitrified bond wheel, cutting edge ratio does not change.

  • PDF

The Study on Interrupted Cutting Tool Life of Cermet and CBN in Ductile Cast Iron(FCD500) (구상흑연주철(FCD500)의 단속가공에서 서멧과 CBN의 공구수명에 관한 연구)

  • Oh, Sung-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.8-12
    • /
    • 2012
  • Recently, a wide range of industrial production area has a competitive advantage through cost reduction. Moreover with the development of industrial technology, base material and cutting tool help the machining technology. But most of the machining enterprises have not hold the R&D facilities and human resources. This mainly disturbs the industrial development and th increase of production efficiency. Especially in the interrupted machining process, it showed different behavior with continuous machining process. So it needs to research and develop the tool life and tool wear mechanism analysis.

Chaotic Analysis of Multi-Sensor Signal in End-Milling Process (엔드밀가공시 복합계측 신호에 의한 공구 마멸의 카오스적 해석)

  • 구세진;이기용;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.817-821
    • /
    • 1997
  • Ever since the nonlinearity of machine tool dynamics was established, researchers attempted to make use of this fact to devise better monitoring, diagnostics and system, which were hitherto based on linear models. Theory of chaos, which explains many nonlinear phenomena comes handy for furthering the analysis using nonlinear model. In this study, measuring system will be constructed using multi-sensor (Tool Dynamometer, Acoustic Emission) in end millingprocess. Then, it will be verified that cutting force is low-dimensional deterministic chaos calculating Lyapunov exponents, Fractal dimension, Embedding dimension. Aen it will be investigated that the relations between characteristic parameter caculated form sensor signal and tool wear.

  • PDF

Machinability Evaluation of CBN Ball End Milling in Die & Mold Steels with High Hardness (고경도 금형강의 CBN 볼 엔드밀 가공에서 가공성 평가)

  • Kim, Hong-Gyoo;Sim, Jae-Hyung;Lee, Jong-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.119-126
    • /
    • 2007
  • Generally, the machinability of materials that have a good mechanical properties is poor. The material having a high strength, high toughness in high temperature and wear resistance, it is difficult to remove a chip from workpiece. STD11 and NAK80 are kinds of these materials and these materials can be used in many industrial fields. But it is limited in use because of high cost and poor machinability. In this experimental study, the cutting of STD11 and NAK80 were used to decide the machinability and the tool shape of CBN ball end mill. From the results, the CBN ball end mill is verified that the estimated cutting edge shape of rake angle 30 degree has consistent effect on the tool wear and cutting force.

A experimental study on the detection of the signals which are the new and worn end mills working in the machining center (엔드밀의 마모와 신호변화에 관한 실험적 연구)

  • 이창희;조택동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.975-979
    • /
    • 2002
  • This paper studies the indirect parameters when the new and worn end mill working in the machining center. The parameter output methods are cutting force, current values and AE signals. In the result, when the worn end mill operating, cutting forces increase the 14.71〔N〕, current values increase the 2.917〔A〕 and 1.168〔A〕 according to the spindle mote. and feed motor, and AE signals increase the 0.588$\times$10$^{-5}$ 〔A〕. We can use these parameters in the detection of end mill wear.

  • PDF