• Title/Summary/Keyword: Cutting type milling machine

Search Result 21, Processing Time 0.027 seconds

Milling Characteristics of Cutting-Type Rice Milling Machine - According to Cutting Roller Induced Guide Angles -

  • Cho, Byeong-Hyo;Kang, Tae-Hwan;Lee, Dong-Il;Won, Jin-Ho;Lee, Hee-Sook;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • v.42 no.2
    • /
    • pp.112-116
    • /
    • 2017
  • Purpose: The purpose of this study was to analyze the milling characteristics of white rice depending on the guide angles of the cutting roller's induced guide, as well as to verify optimum milling conditions for the cutting-type milling machine. Methods: Brown rice, which was produced in Cheongju-si, Chungcheongbuk-do, Republic of Korea, in 2014, was used as the experimental material. The milling characteristics of white rice were measured under six different guide angle levels of the cutting roller, which were none, $0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $15^{\circ}$, and $20^{\circ}$. The quantity of brown rice for each experiment was 500 kg, and the milling characteristics were measured according to the whiteness, rice temperature, cracked rice ratio, broken rice ratio, and energy consumption. Results: The whiteness of white rice maintained a uniform level, indicating at range of $38{\pm}0.5$, regardless of the cutting roller guide angles under all conditions. The rice temperature rise during milling was found to be rather low, at $13.9^{\circ}C$ and $13.6^{\circ}C$ at $10^{\circ}$ and $15^{\circ}$ guide angles, respectively. The cracked rice ratio after milling was 18.67%-19.47%, and the broken rice ratio was 0.68% at a $10^{\circ}$ guide angle, which is the lowest in comparison to other guide angles. Energy consumption was lower when the guide was used compared to that with-out the use of the guide. The energy consumption tended to increase as the cutting roller guide angle increased. Conclusions: From the above results, we conclude that the cutting roller guide angles of $0^{\circ}$ and $10^{\circ}$ are suitable for producing high quality rice during milling with a cutting-type milling machine.

Milling characteristics of cutting-type rice milling machine according to the rotating speed of the main shaft

  • Cho, Byeong-Hyo;Han, Chung-Su;Kang, Tae-Hwan;Lee, Dong-Il;Won, Jin-Ho;Lee, Hee-Sook
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.416-423
    • /
    • 2017
  • This study aimed to identify milling characteristics depending on the rotating speed of the main shaft of the cutting-type rice milling machine which can minimize the conventional milling process. Brown rice, which was produced in Gunsan-si, Jeollabuk-do, Republic of Korea, in 2016, was used as the experimental material. The milling characteristics of white rice were measured under four different rotating speeds of main shaft: 950 - 1,050 rpm, 1,000 - 1,100 rpm, 1,050 - 1,150 rpm, and 1,100 - 1,160 rpm. For each shaft speed, 300 kg of brown rice was processed, and the milling characteristics were measured according to the whiteness, grain temperature, cracked rice ratio, broken rice ratio, turbidity, and energy consumption. The whiteness of rice grain was found to be consistent at around $40{\pm}0.5$ only when milled at the shaft speed of 950 - 1,050 or 1,000 - 1,100 rpm. The grain temperature during the milling process increased by 11.35 to $11.85^{\circ}C$, showing little differences amongst shaft speeds. The cracked rice ratio increased by 8.2 to 10.4% at all conditions. The broken rice ratio ranged from 0.58 to 0.76%, reflecting a low level. The turbidity after milling was 54.8 ppm when milled at 1,000 - 1,100 rpm. Energy consumption of 12.98 and 12.18 kWh/ton were recorded at the shaft speed of 1,000 - 1,100 and 1,050 - 1,150 rpm, respectively. The result of this study indicates that the optimal rotating speed of main shaft would be 1,000 - 1,100 rpm for a cutting-type rice milling machine.

The Milling Characteristics of Cutting Type Rice Milling Machine Depending on the Number of a Cutting Roller's Air Vent and Blowing Velocity (절삭식 정미기의 절삭롤러 통풍구 수와 송풍속도에 따른 정백특성)

  • Cho, Byeong Hyo;Kang, Sin Hyeong;Won, Jin Ho;Lee, Hee Sook;Kang, Tae Hwan;Lee, Dong Il;Han, Chung Su
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.110-115
    • /
    • 2017
  • This study aimed to identify milling characteristics depending on the number of a cutting roller's air vent and blowing velocity to remove rice bran by the cutting type milling machine which can minimize the conventional milling process. The level of whiteness was found to be $38{\pm}0.5$ in all the conditions, showing consistent whiteness levels during milling. The rice temperatures turned out to be 15.4 and $14.6^{\circ}C$ which were rather low-level under the conditions of the cutting roller with 3 vents and blowing velocities of 35 and 40 m/s respectively. Cracked rice ratio was 2.13% under the conditions of the cutting roller with 3 vents and a blowing velocity of 35 m/s. Broken rice ratio showed the range of 0.762-0.869%, reflecting a low level. Turbidity after milling was decreased, as blowing velocity became faster. Energy consumption for milled rice production was decreased, as blowing velocity became faster. The optimum milling condition for cutting type milling machine depending on air vent number of cutting roller and blowing velocity was found to be 3 vents and 35 m/s.

3D Cutting Machine of EPS Foam for Manufacturing Free-Formed Concrete Mold (비정형 콘크리트 거푸집 제작을 위한 EPS Foam의 3D 가공기계)

  • Seo, Junghwan;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.35-39
    • /
    • 2017
  • We used a construction method using a CNC milling machine, where free-formed molds were made by cutting EPS (Expanded PolyStyrene) foam with the CNC machine, to build free-formed buildings. CNC milling is off-the-shelf technology that can easily cut EPS foam; however its production cost is too high and the time to manufacture an EPS mold is too long. This paper proposes a novel cutting machine with a fast and cost effective mechanism to manufacture EPS concrete molds. Our machine comprises a cutter and Cartesian coordinate type moving mechanism, where the cutter cuts EPS foam using a hotwire in the shape of '$\sqcap$' and is capable of adjusting its cutting angle in real-time while keeping its cutting width. We proved through cutting experiments on the CNC machine that cutting time was greatly shortened compared to the conventional method and that the resulting concrete mold satisfied manufacturing precision.

A Study on the Prediction of Temperature Distribution and Machining Force in the Milling Process (밀링가공에서의 온도분포와 절삭력 예측을 위한 연구)

  • 강재훈;송준엽;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.394-397
    • /
    • 2004
  • This paper presents a simple analytic method using 2D simulation program for predications of cutting force and machining temperature in dry type milling process. And also, comparison of cutting force and machining temperature obtained from experiment and simulation work is accomplished to distinguish of suitability.

  • PDF

An Evaluation on Cutting Characteristics in Milling Process with Different Helix Angle Endmills (밀링가공에서 부등각 엔드밀의 절삭특성 평가)

  • 이상복;김원일;왕덕현;김실경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • The experimental research was conducted to find an end mill with an ideal helix angle, which has a superior anti-vibration effect and a low machining tolerance. A conventional endmill which all low blades are $30^{\circ}$ helix angles and a different helix angle endmill which the opposite two blades are $30^{\circ}$ and the other opposites are different helix angles were studied. The cutting farce, machining tolerance and surface roughness were obtained. The AE signals appeared to have low values in up-milling rather than in down-milling. These are also appeared to have low values at low spindle revolutions rates. The cutting force values of Fxy and Fxyz were found to be increased according to the value of helix angle. In up-milling, it was difficult to find a definite tendency in machining tolerance, but in down-milling machining tolerance of the different helix angle end mill was found to be lower than that of the convention end mill. There is a definite tendency that the surface roughness gets better as the RPM increases. In down-milling, Type A($25^{\circ}$$30^{\circ}$) appeared to bring the most satisfactory result.

Aa Evaluation on Cutting Characteristics in Milling process with Different Helix Angle Endmills (밀링가공에서 부등각 엔드밀의 절삭특성에 관한 고찰)

  • 이상복;김원일;왕덕현;김실경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.196-201
    • /
    • 2003
  • The experimental research was conducted to find an end mill with an ideal helix angle, which has a superior anti-vibration effect and a low machining-tolerance. A conventional endmill which all four blades are $30^\circ$ helix angles and a different helix angle endmill which the opposite two blades are $30^\circ$ and the other opposites are different helix angles were studied. The cutting force, machining tolerance and surface roughness were obtained. The AE signals appeared to have low values in up-milling rather than in down-milling. These are also appeared to have low values at low spindle revolutions rates. The cutting force values of Fxy and Fxyz were found to be increased according to the value of helix angle. In up-milling, it was difficult to find a definite tendency in machining tolerance, but in down-milling, machining tolerance of the different helix angle end mill was found to be lower than that of the convention end mill. There is a definite tendency that the surface roughness gets better as the RPM increases. In down-milling, Type $A(25^\circ+30^\circ)$ appeared to bring the most satisfactory result.

  • PDF

A Pole-Assignment ACC System in the Peripheral End Milling Process (엔드밀링 공정에서 극점배치 구속적응제어 시스템)

  • Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.63-72
    • /
    • 1996
  • In order to regulate the cutting force at a desired level during peripheral end milling processes a feedrate override Adaptive Control Constraint (ACC) system was developed. The feedrate override function was accomplished through a development of programmable machine controller (PMC) interface technique on the NC controller, Nonlinear model of the cutting process was linearized as an adaptive model with a time varying process parameter. An integral type estimator was introduced for on-line estimation of the cutting process parameter, Zero order hold digital control methodology which uses pole-assignment concept for tuning of PI controllers was applied for the ACC system. Performance of the ACC system wsa confirmed on the vertical machining center equipped with fanuc OMC through a large amount of experiment.

  • PDF

NC Tool Paths Program Development for the Pocket Machining (포켓 가공을 위한 NC 공구경로의 프로그램 개발)

  • Oh, Seon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2003
  • Pocket machining is metal removal operation commonly used for creating depressions in machined parts. Numerically controlled milling is the primary means for machining complex die surface. These complex surfaces are generated by a milling cutter which removes material as it traces out pre-specified tool paths. To machine, a component on a CNC machine, part programs which define the cutting tool path are needed. This tool path is usually planned from CAD, and converted to a CAM machine input format. In this paper I proposed a new method for generating NC tool paths. This method generates automatically NC tool paths with dynamic elimination of machining errors in 2$\frac{1}{2}$ arbitrary shaped pockets. This paper generates a spiral-like tool path by dynamic computing optimal pocket of the pocket boundary contour based on the type and size of the milling cutter, the geometry of the pocket contour and surface finish tolerance requirements. This part programming system is PC based and simultaneously generates a G-code file.

Prediction of Surface Roughness through Measuring Runout in High-speed Ball-End Milling (고속 볼엔드밀가공에서 회전오차의 측정을 통한 표면거칠기 예측에 관한 연구)

  • 김병국;이기용;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.889-893
    • /
    • 1997
  • In this study the runout of spindle is selected as a parameter through which we could measure the machinability of machine and the quality of products. We experimented the effects of runout on surface roughness in high-speed ball-end milling by cutting HP4M workpiece in various cutting condition. It was founs that sunout makes a directive effects on surface roughness and the frequensy type of runout is more or loss similar with that of surface roughness. So the predcition of surface roughness could be possible through measuring the spindle runout.

  • PDF