• Title/Summary/Keyword: Cutting force model

Search Result 272, Processing Time 0.023 seconds

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

The Mechanical Modeling and design of saw frame in band sawing machine (띠톱기계 톱대의 역학적 모델링 및 설계)

  • LUO, luPing;DING, zelin;DING, shengxia;JIANG, Ping;FAN, li;XIAO, leihua;PAN, bosong;An, Boyoung;No, Joonkkyu;Li, Wenqi;Han, Changsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.390-397
    • /
    • 2019
  • A mechanical model of band sawing saw frame was established according to an analysis of a commonly used saw-frame structure diagram to overcome the problems of low service life, substandard cutting precision and efficiency, and high manufacturing cost caused by the unreasonable design of saw frame. Taking a particular type of sawing machine as an example, stress cycle analysis of the saw blade was carried out according to the mechanical model of the saw frame, and the fatigue analysis model of the most dangerous cross-section point that was most prone to fatigue failure of the saw blade was then established. The fatigue analysis result was used as the basis for the improved design of the saw frame, and the improved detailed saw-frame design parameters were obtained. The results suggested that the saw frame system is much more compact and the saw blade force met the fatigue strength requirements through the improved design. In addition, the service life of the saw blade and the cutting precision were increased. The established mechanical model of the saw frame in this paper is used widely and has high practical application values.

The Study for Optimal Design of Spindle Insert used in Cotton Spinning Machine (방적기계용 스핀들 인서트의 최적설계 관한 연구)

  • Lee, Dong-Woo;Huh, Sun-Chul;Lee, Sang-Suk;Shim, Jae-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.72-78
    • /
    • 2010
  • Textile machinery affects various industry, such as sport leisure industry, metal and chemistry material, electric electron, mechanical energy, packing and printing industry. In case of design of textile machine, the very important fact is absorbing the minute vibration induced by spinning thread and insert which is the part of spindle plays a role of reduction of impact caused by oscillation of thread bobbin. Therefore, Optimal design was executed by design of experiments and kriging optimal design methods to prevent fracture of spindle insert under the fatigue condition and deduced the best value of design parameter to improve the stability of the products. The highest sensitivity is showed at the design parameter A and D. As the spiral number of insert is increase, tension force applied its edge is distributed at whole model and the stress concentration is reduced.

Flux Model of One-shaft Rotary Disc UF Module for the Separation of Oil Emulsion (1축 회전판형 UF 모듈의 투과모델 및 Oil Emulsion 분리 특성)

  • 김제우;노수홍
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.86-95
    • /
    • 1996
  • Rotary disc ultrafiltration module(RDM) was developed for the separation of oil e$$\mu$sions. This module was devised to reduce the gel polarization phenomenon by decoupling the operation pressure and the surface velocity of solution in ultrafiltration(UF) processes. The rotary disc membrane consists of 3mm-thick ABS plate covered with UF membrane (UOP, U.S.A.). When the angular velocity($\omega$) was increased, the pure water flux was slightly decreased due to pressure drop caused by centrifugal force and slip flow at the surface of membrane. The pressure drop was proportional to the square of linear velocity(${\omega}r$). When the angular velocity was changed from 52.36rad/s to 2.62rad/s, the flux decline for 5% cutting oil in one-shaft RDM at $25^{\circ}C$ and 0.1MPa was 30.16%. In the lower concentrations, angular velocity tends to give less effect on the flux. Flux(J; $kg/m^{2} \cdot s$) in a rotating disc module is mainly a function of the bulk concentration($C_{B}$; %), the linear velocity(${\omega}r$; m/s) and the effective transmembrane pressure($\Delta P_{T}$ ; Pa). Using a modified resistance-in-series model, the flux data of cutting oil experiments were fitted to give the following equation.

  • PDF

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.

The Study on Hydraulic Model Experiment of Discharge Channel and Spillway (여수토 방수로의 수리모형검시에 관한 연구)

  • 김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.2
    • /
    • pp.1124-1140
    • /
    • 1966
  • 'This hydraulic experiment have been practised Juk an Reservoir spillway and discharge 'channel which the province Kyong Buk was constructed and designed U. hook, for seizing all state of hydraulic. As result of the experimellt planning and making the model test, it has gained the necessary data at the amendment, projection of the most rational and economical result. 1. Project (1) Experiment project....1/30 of the discharge (2) project flood....0.01945 $m^3$/sec (rapidly) 2. Design Experiment It were sighted the water level for the nine point (L. & R. sides of No. O, L. & R. of No.1, L. side of NO.2, NO.3, No. 4 and NO.5), but it appeared each other that the lowest water level was 0.63 m at spillway (No.5) and the highest water level 0.735m less than planning water level O.75 m at No. 0. It was regarded as the phenomena appearing the difference from the calculation of the rational formular and coefficient of discharge. 3. Experiment examine E. ${\circled1}$ As a table (2) it had not a difference in comparision with design and was some lower value than design experiment's. E ..${\circled2}$) !twas same table (3) in a consequence of Experiment contracted Rocky cutting. E.${\circled3}$. ${\circled4}$ It was done amend.ment Experiment by elevating G.H. in only control point, but was not sure result as a table (2)(3)(4), and so it was changed largely in ${\circled5}$ Experiment. E. ${\circled5}$ Increasing water level was understanded to be proportion to $V^2$ in consideration of centrifugal force in the curve part and showed velocity contracting in curve the effect order's being regular in consequence of 1/6 sloped extending G.H. attached from 5 No. 0 to 1. 50 m, to S No. 0+5m. (S; discharge channel number).

  • PDF

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

Topology Optimization Design of Machine Tools Head Frame Structures for the Machining of Aircraft Parts (항공기부품가공용 공작기계 헤드프레임 구조의 위상최적화 설계)

  • Yun, Taewook;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • The head frame structure of a machine tool for aircraft parts, which requires machining precision and machining of difficult-to-cut materials is required to be light-weighted for precision high-speed machining and to minimize possible deformation by cutting force. To achieve high stiffness and for light-weight structure optimization design, a preliminary model was designed based on finite element analysis. The topology optimization design of light-weight, high stiffness, and low vibration frame structure were performed by minimizing compliance. As a result, the frame weight decreased by 17.3%, the maximum deflection was less than 0.007 mm, and the natural frequency increased by 30.6%. The static stiffness was increased in each axis direction and the dynamic stiffness exhibited contrary results according to the axis. Optimized structure with the high stiffness of low vibration in topology optimization design was confirmed.

A Study on the Slope Ecological Restoration and Revegetation Models of the Baekdu-Mountain Range (백두대간 절토 비탈면의 생태복원녹화 모델에 관한 연구)

  • Kim, Nam-Choon;Nam, Un-Jung;Shin, Kyung-Joon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.1
    • /
    • pp.72-84
    • /
    • 2008
  • Since enactment of the Baekdu-Mountain Range protection law in Dec. 31st 2003, great interest arose in recovery of the natural environment in the Baekdu-Mountain Range. Since the Baekdu-Mountain Range has formed boundaries between different regions and it is the mountain that crosses our country from East to West, there are so many roads that penetrate this area. Slopes made by the construction of roads have poor foundation for the growth of vegetation and it takes a long period to restore only with natural restoration force. For this reason, various methods of revegetation to restore the damages are implemented but until now, revegetation of domestic soil cutting slopes are mainly covered by foreign import grasses to stabilize and cover grounds early. As we depended upon foreign import grasses for slopes revegetation, the landscape did not match in harmony with surrounding vegetation and therefore, we could see that these foreign grasses are withered in 2~3 years after the revegetation works and slopes become barren again. However, currently, there are no applicable standards for designs of green hill, desirable revegetation methods for the hill areas, roads and recovery models. Therefore, in this study, we investigated the status of revegetation plants and revegetation methods for the hill areas of the Baekdu-Mountain Range (azimuth, degree of tilt, and tilted places). Based on this, we attempted to find the desirable recovery models for the hill areas of the Baekdu-Mountain Range.

Carcass characteristics and meat quality of purebred Pakchong 5 and crossbred pigs sired by Pakchong 5 or Duroc boar

  • Lertpatarakomol, Rachakris;Chaosap, Chanporn;Chaweewan, Kamon;Sitthigripong, Ronachai;Limsupavanich, Rutcharin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.585-591
    • /
    • 2019
  • Objective: This study investigated carcass characteristics and meat quality of purebred Pakchong 5, crossbred pigs sired by Pakchong 5, and crossbred pigs sired by Duroc. Methods: Forty-eight pigs (average body weight of 22.25 kg) were composed of three groups as purebred Pakchong 5 (PP), Large $White{\times}Landrace$ pigs sired by Pakchong 5 (LWLRP), and Large $White{\times}Landrace$ pigs sired by Duroc (LWLRD). Each group consisted of eight gilts and eight barrows. At 109-day-raising period, pigs were slaughtered, and carcass characteristics were evaluated. Longissimus thoracis (LT) muscles from left side of carcasses were evaluated for meat quality and chemical composition. Data were analyzed using general linear model procedure, where group, sex, and their interaction were included in the model. Results: The PP had greater carcass, total lean, and ham percentages than crossbred pigs (p<0.05). LWLRP had thicker backfat and more carcass fat percentage than LWLRD (p<0.05). There were no differences (p>0.05) on cutting percentages from tender loin, loin, boston butt, and picnic shoulder among groups. The PP and LWLRP had larger loin eye area (LEA) than LWLRD (p<0.05). Gilts had more loin percentage and lower $L^*$ value than barrows (p<0.05). No meat color parameters ($L^*$, $a^*$, and $b^*$) were affected by groups (p>0.05). PP and LWLRP had larger muscle fiber diameters than LWLRD (p<0.05). However, water holding capacity, Warner-Bratzler shear force values, and chemical composition of LT were not affected by group or sex (p>0.05). Conclusion: Pakchong 5 purebred has good carcass and lean percentages. Compared to Duroc crossbred pigs, Pakchong 5 crossbreds have similar carcass and lean percentages, larger LEA, and slightly more carcass fat, with comparable meat quality and chemical composition. Pakchong 5 boars are more affordable for very small- to medium-scale pig producers.