• 제목/요약/키워드: Cutting force direction

검색결과 78건 처리시간 0.021초

마이크로 채널의 가공성에 관한 연구 (A Study on the Machinability of Micro-Channel)

  • 홍민성;김종민
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.51-57
    • /
    • 2008
  • Recently, the manufacturer of microscopic structures along with the development of technology to produce electronics, communication and semiconductors allows various components to be smaller in size, with higher precision. Therefore, preoccupancy of micro/nano-level machining technology in order to product micro/nano-components and parts is key issue in the field of manufacturing. In this study, machinability of micro machining was studied through the machining of aluminum, brass and steel workpiece. Inspection of the cutting force variation patterns of large numbers of micro machining indicated that characteristics of the workpiece. Surface roughness prediction methods were developed by considering the variation of the static part of the feed direction cutting force. The accuracy of the proposed approaches were tested with experimental data and the agreement between the predictions and actual observations are addressed.

황삭 가공을 위한 최적 직선 평행 공구경로 생성 (An Optimized Direction Parallel Tool Path Generation for Rough Machining)

  • 김현철
    • 대한기계학회논문집A
    • /
    • 제32권9호
    • /
    • pp.761-769
    • /
    • 2008
  • The majority of mechanical parts are manufactured by milling machines. Hence, geometrically efficient algorithms for tool path generation and physical considerations for better machining productivity with guarantee of machining safety are the most important issues in milling tasks. In this paper, an optimized path generation algorithm for direction parallel milling which is commonly used in the roughing stage is presented. First of all, a geometrically efficient tool path generation algorithm using an intersection points-graph is introduced. Although the direction parallel tool path obtained from geometric information have been successful to make desirable shape, it seldom consider physical process concerns like cutting forces and chatters. In order to cope with these problems, an optimized tool path, which maintains constant MRR in order to achieve constant cutting forces and to avoid chatter vibrations at all time, is introduced and the result is verified. Additional tool path segments are appended to the basic tool path by using a pixel based simulation technique. The algorithm has been implemented for two dimensional contiguous end milling operations, and cutting tests are conducted by measuring spindle current, which reflects machining situations, to verify the significance of the proposed method.

초정밀 미세가공을 위한 궤적 변화에 따른 타원 궤적 진동 절삭 (Elliptical Vibration Cutting with Variable Trajectory for Ultra-precision Micro-Machining)

  • 김기대;노병국
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.52-58
    • /
    • 2007
  • A cutting device capable of generating various shapes of the cyclic elliptical trajectory of a cutting tool was proposed and micro v-grooving experiments were performed to investigate the characteristics of elliptical vibration cutting (EVC). The proposed cutting device is comprised of a pair of parallel piezoelectric actuators with which harmonic voltages of varying phase difference and magnitude are supplied, creating various shapes of the elliptical tool path. The attributes of the elliptical locus involving the direction of the axis of an ellipse, the rotational direction and amplitudes of a trajectory were fine-tuned for stable operation of the EVC. The EVC characteristics performed with brass and copper revealed reduction in the cutting resistance and suppression of burr formation, resulting in the enhancement of form accuracy of machined micro-features. While the effect of the EVC increases with the increase of excitation frequency and the amplitude, it is found that a change in the cutting force decreases as the amplitude of an elliptical locus increases.

볼 엔드밀을 통한 자유곡면의 고속가공에서 절삭방향에 따른 가공성 평가 (Machinability Evaluation with Cutting Direction in High Speed Machining of Free Form Surface through Ball End Milling)

  • 김경균;강명창;이득우;김정석
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.84-89
    • /
    • 2001
  • In recent years, there is increasing demand of esthetic design and complex function in aerospace, automobile and die/mold industry, which brings into limelight high-precision, high-efficient machining of sculptured surface. This paper deals with the establishment of the optimal tool path on free form surface in high speed ball end milling. Ball end milling is widely used for free form surface die and mold. In this machining, the cutting direction was changed with tool path. The cutting characteristics, such as cutting force and surface form are varied according to the variation of cutting directions. In this paper, the optimal tool path with down cutting in free form surface cutting is suggested.

  • PDF

STD11 금형강의 고속가공에서 가공정밀도 향상에 관한 연구 (A Study on the Improvement of Machining Accuracy in High Speed Machining of STD11)

  • 이춘만;최치혁;정원지;정종윤;고태조;김태형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.329-334
    • /
    • 2002
  • High-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate, spindle revolution and cutting force are control factors. The effect of the control factors on machining accuracy is discussed for the results of surface roughness and machining error in Z-direction for the high speed machining of STD11.

  • PDF

달리기 속도와 방향전환 각도에 따른 하지관절 움직임 분석 (The Analysis of Joint Motion of Lower Extremities to Running Velocities and Cutting Angles)

  • 권오복;정철정
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.9-16
    • /
    • 2007
  • Cutting movements frequently occur in sports and influence much Lower Extremity injuries. The purpose of this study was to compare joint motion of lower extremities to cutting angles and running velocities. Seven male subjects performed cutting movements to three angles($0^{\circ}$, $30^{\circ}$, $60^{\circ}$). Subjects were instructed to run five meters at a speed of 2.5m/s and 4.5m/s before contacting their right foot on the force plate and then change direction to the left. The Peak hip, knee and ankle joint kinematics were influenced according to the running velocities and cutting angles. In conclusion, Fast running velocity and cutting angle will may influence on the lower extremity joint instability on real game situation.

밀링 공정시 공구 파손 검출 (II) -제 2 편: 주축모터 전류를 이용한 밀링의 황삭 가공 중 공구파손 검출- (Tool Fracture Detection in Milling Process (II) -Part 2: Tool Fracture Detection in Rough Milling Using Spindle Motor Current-)

  • 김기대;이강희;주종남
    • 한국정밀공학회지
    • /
    • 제15권5호
    • /
    • pp.110-119
    • /
    • 1998
  • Dynamic cutting force variations in milling process were measured indirectly using spindle motor current. Magnitude of the spindle motor current is independent of cutting direction. Quasi-static sensitivity of the spindle motor current is higher than that of the feed motor current. Dynamic sensitivity of the spindle motor current is lower but cutting force was correctly represented by spindle RMS current in rough milling. In rough milling, chipping and tool fracture were well detected by the proposed tool fracture index using spindle motor current.

  • PDF

Liquid Nitrogend의 감찰효과 -물리적 현상에 의한 절삭력- (The Lubrication Effect of Liquid Nitrogen in Cryogenic Machining [I]- Part 1: Cutting Force Component with Physical Evidences -)

  • Jun Seong Chan;Jeong Woo Cheol
    • 대한안전경영과학회지
    • /
    • 제4권2호
    • /
    • pp.209-221
    • /
    • 2002
  • Machinability improvement by the use of liquid nitrogen in cryogenic machining has been reported in various studies. This has been mostly attributed to the cooling effect of liquid nitrogen. However, No study has been found in discussion on whether liquid nitrogen possesses lubrication effect in cryogenic cutting. In machining tests, cryogenic machining reduced the force component in the feed direction, indicating that the chip slides on the tool rake face with lower friction. This study also found that the effectiveness of LN2 lubrication depends on the approach how LN2 is applied regarding cutting forces related.

Evaluation of rock cutting efficiency of the actuated undercutting mechanism

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.359-368
    • /
    • 2022
  • Undercutting using an actuated disc cutter (ADC) involves more complex cutting mechanism than traditional rock cutting does, requiring the application of various new cutting parameters, such as eccentricity, cutter inclination angle, and axis rotational speed. This study presents cutting-edge laboratory-scale testing equipment that allows performing ADC tests. ADC tests were carried out on a concrete block with a specified strength of 20 MPa, using a variety of cutting settings that included penetration depth (p), eccentricity (e), and linear velocity (v). ADC, unlike pick and disc cutting, has a non-linear cutting path with a dynamic cutting direction, requiring the development of a new method for predicting cutting force and specific energy. The influence of cutting parameters to the cutter forces were discussed. The ratio of eccentricity to the penetration depth (e/p) was proposed to evaluate the optimal cutting condition. Specific energy varies with e/p ratio, and exhibits optimum values in particular cases. In general, actuated undercutting may potentially give a more efficient cutting than conventional pick and disc cutting by demonstrating reasonably lower specific energy in a comparable cutting environment.

리니어 모터를 이용한 척킹 컴플라이언스 보상 (Chucking Compliance Compensation by Using Linear Motor)

  • 이선규;이진호
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.15-22
    • /
    • 2002
  • This paper introduces a compensating system for machining error, which is resulted from chucking with separated jaws. In machining the chucked cylindrical workpiece, the deterioration of machining accuracy, such as out-of-roundness is inevitable due to the variation of the radial compliance of the chuck workpiece system which is caused by the position of jaws with respect to the direction of the applied force. To compensate the chucking compliance induced error, firstly roundness profile of workpiece due to chucking compliance after machining needs to be predicted. Then using this predicted profile, the compensated tool feed trajectory can be generated. And by synchronizing the cutting tool feed system with workpiece rotation, the chucking compliance induced error can be compensated. To satisfy the condition that the cutting tool feed system must provide high speed and high position accuracy, brushless linear DC motor is used. In this study, firstly through the force-deflection experiment in workpiece chucked lathe, the variation of radial compliance of chuck workpiece system is obtained. Secondly using the mathematical equation and cutting experiment result, the predicted profile of workpiece and its compensation tool trajectory are generated. Thirdly the configuration of compensation system using linear motor is introduced, and to improve the system performance, PID controller is designed. Finally the tracking performance of system is examined by experiment. Through the real cutting experiment, roundness is significantly improved.