• Title/Summary/Keyword: Cutting environment

Search Result 561, Processing Time 0.025 seconds

Development of a Virtual Machine Tool - Part 1 (Cutting Force Model, Machined Surface Error Model and Feed Rate Scheduling Model) (가상 공작기계의 연구 개방 - Part 1 (절삭력 모델, 가공 표면 오차 모델 및 이송 속도 스케줄링 모델))

  • Yun, Won-Su;Go, Jeong-Hun;Jo, Dong-U
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.74-79
    • /
    • 2001
  • In this two-part paper, a virtual machine tool (VMT) is presented. In part 1, the analytical foundation of a virtual machining system, envisioned as the foundation for a comprehensive simulation environment capable of predicting the outcome of cutting processes, is developed. The VMT system purposes to experience the pseudo-real machining before real cutting with a CNC machine tool, to provide the proper cutting conditions for process planners, and to compensate or control the machining process in terms of the productivity and attributes of products. The attributes can be characterized with the machined surface error, dimensional accuracy, roughness, integrity and so forth. The main components of the VMT are cutting process, application, thermal behavior and feed drive modules. In part 1, the cutting process module is presented. The proposed models were verified experimentally and gave significantly better prediction results than any other method. The thermal behavior and feed drive modules are developed in part 2 paper. The developed models are integrated as a comprehensive software environment in part 2 paper.

  • PDF

A Determination of Cutting Conditions Considered Environmental Factors (환경성을 고려한 절삭조건 결정)

  • 임석진;박면웅;김경섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.881-884
    • /
    • 2003
  • Owing to governmental regulations and concern regarding the safety of the environment, environmental conscious machining technology has become important in today's manufacturing industries. However, cutting conditions in metal cutting processes must also consider traditional dimensions such as production cost, production time and quality of a final product. The purpose of this study is to determine the cutting conditions in achieving a balanced consideration of productivity and environmental consciousness. The environmental factors such as cutting fluid, toxicity and energy are considered in metal cutting processes. In order to consider the relationship between environmental impacts and machining parameter, two factors of the metal cutting processes in this study are considered: cutting fluid and tool life. The experimental results are provided and discussed.

  • PDF

Optimum Machining Condition of Die Steel In The Oil-mist Condition (오일미스트 조건에서의 금형강의 최적절삭조건)

  • Kim Sang-Min;Kim Joon-Hyun;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • The purposes of using cutting fluid during cutting have been cooling, lubricating, chip washing and anti-corroding. However, the present manufacturing industry restricts the use of cutting fluid because cutting fluid contains poisonous substances which are harmful to the human body. Therefore environmentally conscious machining and technology have more important position in machining process because cutting fluids have significant influence on the environment in milling process. In this study, environmentally conscious machining can be obtained by the way of selecting the optimum machinig conditon using the design of experiment. Cutting using oil-mist showed better cutting characteristics than dry, air and fluid cutting with respect to by cutting force, tool wear and surface roughness. Also, the optimum machining condition for cutting using oil-mist could be selected through Taguchi method.

Evaluation of rock cutting efficiency of the actuated undercutting mechanism

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.359-368
    • /
    • 2022
  • Undercutting using an actuated disc cutter (ADC) involves more complex cutting mechanism than traditional rock cutting does, requiring the application of various new cutting parameters, such as eccentricity, cutter inclination angle, and axis rotational speed. This study presents cutting-edge laboratory-scale testing equipment that allows performing ADC tests. ADC tests were carried out on a concrete block with a specified strength of 20 MPa, using a variety of cutting settings that included penetration depth (p), eccentricity (e), and linear velocity (v). ADC, unlike pick and disc cutting, has a non-linear cutting path with a dynamic cutting direction, requiring the development of a new method for predicting cutting force and specific energy. The influence of cutting parameters to the cutter forces were discussed. The ratio of eccentricity to the penetration depth (e/p) was proposed to evaluate the optimal cutting condition. Specific energy varies with e/p ratio, and exhibits optimum values in particular cases. In general, actuated undercutting may potentially give a more efficient cutting than conventional pick and disc cutting by demonstrating reasonably lower specific energy in a comparable cutting environment.

An Experimental Verification on the Development of an Innovative Diamond Wire Saw Cutting Technology (새로운 다이아몬드 와이어 쏘 절단 기술 개발에 관한 실험적 검증)

  • Park, Jong Hyup;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2018
  • This paper introduces a innovative diamond wire saw cutting technology and its experimental verification that can be utilized for cutting heavy structures. While conventional diamond wire saw cutting technologies such as water cooled cutting method and dry cutting method cause severe environmental problems due to generating massive concrete sludge or dust scattering, the proposed method can eliminate those problems considerably. Through extensive experiments using heavy structure test bed and real bridge pier structure, comprehensive analysis and comparative evaluation about various cutting methods were performed. As a result, the innovative diamond wire saw cutting method could achieve a similar cutting and cooling performance to the water cooled cutting method without generating concrete sludge and it showed an improved cutting and cooling performance to the dry cutting method without dust scattering. Consequently it is confirmed that the suggested cutting technology can be a promising environment-friendly alternative in the field of heavy structure dismantling.

Environmentally Conscious Machining Technology of Aircraft Material(12Cr steel) (항공기소재(고크롬강)의 환경친화적 가공기술)

  • 강명창;김정석;이득우;황윤호;송준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1051-1054
    • /
    • 2002
  • Environmentally conscious machining and technology have been taking more and more important position in machining process. Since cutting fluid has some impact on environment, many researches are being carried out to minimize the use of cutting fluid. It can be Increased the environmental pollution through not using coolant any more or minimizing it. In this study, the cooling effects of cutting methods using the compressed cold air, dry cutting and cutting fluid will investigate in the blade machining. In order to examine the characteristics of cutting and tool in the environmentally conscious machining, this work investigates experimentally the degree of tool wear, cutting force and characteristics of surface roughness in relation to machining conditions and cooling methods.

  • PDF

DPS Board Appication for Regulation of Cutting Force under Varying Cutting Conditions during Milling Process (밀링공정중 절삭조건 변화에 따른 절삭력 추종제어를 위한 DSP보드 응용)

  • Oh, Young-Tak;Kwon, Won-Tae;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.38-46
    • /
    • 1999
  • Spindle motor current is used to estimate the cutting force indirectly and control the feed rate for the cutting force regulation. The proposed algorithm is implemented to a DSP board based hardware for the industrial application. The software to make POP terminal communicate with the DSP board and POP server is coded under Windows 95 environment. Experiments under varying cutting conditions show that the DSP board recognizes the information of installed cutting tool and cutting conditions delivered from the POP server to use them for the proper control of the feed rate. The cutting force is regulated well during machining of tapered or stepped workpiece and circular shaped workpiece as well.

  • PDF

Machining Characteristics of Ti-6Al-4V Thread (Ti-6Al-4V 티타늄 합금나사의 절삭 특성)

  • Kim, Hyung-Sun;Choi, Jong-Guen;Kim, Dong-Min;Lyu, Min-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.514-520
    • /
    • 2009
  • Titanium is one of the most attractive materials due to their superior properties of high specific strength and excellent corrosion resistance. The applications in aerospace and medical industries demand machining process more frequently to obtain more precise products. Machining of titanium is faced with strong challenges such as increased component complexity i.e. airframe components manufacturing processes. The machining cost on titanium have traditionally demanded high cutting tool consumable cost and slow machining cycle times. Similarly, the high wear of the cutting tools restricts the cutting process capabilities. Titanium screws applied to fasten parts In the several corrosion environment. In the thread cutting of titanium alloys, the key point for successful work is to select proper cutting methods and tool materials. This study suggests a guidance fur selecting the cutting methods and the tool materials to improve thread quality and productivity. Some experiments investigate surface roughnesses, cutting forces and tool wear with change of various cutting parameters including tool materials, cutting methods, cutting speed. As the results, the P10 type insert tip was assured of the best for thread cutting of Ti-6Al-4V titanium alloy. Also the initial depth of infeed was desirable to use the value below 0.5mm as the uniform cutting area method is applied.

  • PDF

Development of a Cutting Support Cleaning System considering the Dross Adhesion Characteristics (드로스 부착 특성을 고려한 절단 정반 크리닝 시스템 개발)

  • Kim, Ho-Kyeong;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5919-5924
    • /
    • 2014
  • Accumulated dross adhered to the cutting support degrades the cutting accuracy and aggravates the working environment by reducing the efficiency of the dust collector. Furthermore, the cutting machine and product can be damaged by the scattering of molten metal. In this study, an attempt was made to increase the productivity of steel cutting process and improve the working environment by dross control. The dross adhesion characteristics were invested by a cutting experiment and the design concept for a dross removal machine was devised. Finally, a cutting support cleaning system and its operating algorithm were developed. The applicability of the developed system was examined and verified by a long-term field test after installation of the plasma arc cutting system of a shipyard.

Analysis of Cutting Properties with Reference to Amount of Coolant used in an Environment-Conscious Turning Process

  • Yang, Seung-Han;Lee, Young-Moon;Kim, Young-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2182-2189
    • /
    • 2004
  • In the recent years, environmentally conscious design and manufacturing technologies have attracted considerable attention. The coolants, lubricants, solvents, metallic chips and discarded tools from manufacturing operations will harm our environment and the earth's ecosystem. In the present work, the Tukey method of multiple comparisons is used to select the minimum level of coolant required in a turning process. The amount of coolant is varied in 270 designed experiments and the parameters cutting temperature, surface roughness, and specific cutting energy are carefully evaluated. The effects of coolant mix ratio as well as the amount of coolant on the turning process are studied in the present work. The cutting temperature and surface roughness for different quantity of coolant are investigated by analysis of variance (ANOVA) - test and a multiple comparison method. ANOVA-test results signify that the average tool temperature and surface roughness depend on the amount of coolant. Based on Tukey's Honestly Significant Difference (HSD) method, one of the multiple comparison methods, the minimum level of coolant is 1.0 L/min with 2% mix ratio in the aspect of controlling tool temperature. F-test concludes that the amount of coolant used does not have any significant effect on specific cutting energy. Finally, Tukey method ascertains that 0.5 L/min with 6% mix ratio is the minimum level of coolant required in turning process without any serious degradation of the surface finish. Considering all aspects of cutting, the minimum coolant required is 1.0 L/min with 6% mix ratio. It is merely half the coolant currently used i.e. 2.0 L/min with 10% mix ratio. Minimal use of coolant not only economically desirable for reducing manufacturing cost but also it imparts fewer hazards to human health. Also, sparing use of coolant will eventually transform the turning process into a more environment-conscious manufacturing process.