• 제목/요약/키워드: Cutting Process Dynamics

검색결과 73건 처리시간 0.028초

고속 밀링 가공 시 주축 변위 측정을 통한 절삭력의 실시간 감시 (On-line Cutting Force Estimation by N[ensuring Spindle Displacement in High-Speed Milling Process)

  • 김종혁;김진현;김일해;안형준;장동영;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.133-134
    • /
    • 2006
  • A cylindrical capacitive displacement sensor (CCS) was developed and applied for monitoring end milling processes. Dynamic characteristics of a spindle-assembly were measured using the CCS and a designed magnetic exciter. The technique to extract the spindle displacement component caused only by cutting from the measured signals using the CCS was proposed in the paper. Using CCS signals and FRF (Frequency Response Function) derived from dynamics of the spindle tool system, dynamic cutting forces are estimated quantitatively.

  • PDF

선삭공정시 공구파손의 실시간 검출에 관한 연구 (A Study on Real-time Monitoing of Tool Fracture in Turning)

  • 최덕기;주종남;이장무
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.130-143
    • /
    • 1995
  • This paper presents a new methodology for on-line tool breadage detection by sensor fusion of an acoustic emission (AE) sensor and a built-in force sensor. A built-in piezoelectric force sensor, instead of a tool dynamometer, was used to measure the cutting force without altering the machine tool dynamics. The sensor was inserted in the tool turret housing of an NC lathe. FEM analysis was carried out to locate the most sensitive position for the sensor. A burst of AE signal was used as a triggering signal to inspect the cutting force. A sighificant drop of cutting force was utilized to detect tool breakage. The algorithm was implemented on a DSP board for in-process tool breakage detection. Experiental works showed an excellent monitoring capability of the proposed tool breakage detection system.

  • PDF

A study on characteristics and internal exposure evaluation of radioactive aerosols during pipe cutting in decommissioning of nuclear power plant

  • Kim, Sun Il;Lee, Hak Yun;Song, Jong Soon
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1088-1098
    • /
    • 2018
  • Kori unit #1, which is the first commercial nuclear power plant in Korea, was permanently shutdown in June 2017, and it is about to be decommissioned. Currently in Korea, researches on the decommissioning technology are actively conducted, but there are few researches on workers internal exposure to radioactive aerosol that is generated in the process of decommissioning nuclear power plants. As a result, the over-exposure of decommissioning workers is feared, and the optimal working time needs to be revised in consideration of radioactive aerosol. This study investigated the annual exposure limits of various countries, which can be used as an indicator in evaluating workers' internal exposure to radioactive aerosol during pipe cutting in the process of decommissioning nuclear power plants, and the growth and dynamics of aerosol. Also, to evaluate it, the authors compared/analyzed the cases of aerosol generated when activated pipes are cut in the process of nuclear power plants and the codes for evaluating internal exposure. The evaluation codes and analyzed data conform to ALARA, and they are believed to be used as an important indicator in deriving an optimal working time that does not excess the annual exposure limit.

자이로 스코프 효과를 고려한 밀링 채터 안정성 해석 (Milling Chatter Stability Analysis in Consideration of Gyroscopic Effect)

  • 박재현;홍성욱;김현수;박중윤
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.58-63
    • /
    • 2000
  • The dynamics of spindle-bearing-workpiece system significantly affects the cutting condition and stability in milling process. The present paper investigates the chatter stability of milling process due to the change in the dynamics of spindle-bearing-workpiece systems. In particular, the present paper focuses on chatter stability due to the presence of gyroscopic effect. An eigenvalue problem approach to the stability of milling process is extensively used in this paper. To incorporate the rotational speed dependent gyroscopic effect, an iterative algorithm is proposed. A numerical example is provided for examining the chatter stability problem in the presence of gyroscopic effects.

  • PDF

신경회로망을 이용한 채터 특성 및 안정영역 분석 (The Characteristics and Stability Boundary Analysis of Chatter using Neural Network)

  • 윤문철;김영국;김광희
    • 한국기계가공학회지
    • /
    • 제5권2호
    • /
    • pp.16-21
    • /
    • 2006
  • In this study, the analytic realization of chatter mechanism using radial basis neural network(RBNN) was introduced and compared with the conventional stability analysis. In this regard, the FFT and time series spectrum analysis was used as a criterion for the existence of chatter in end-milling force. The desired coded outputs of chatter was trained and finally converged to desired outputs. The output of the RBNN match well with the conventional desired stability lobe. Using this trained data, the stability boundary of the radial basis neural network was acquired using the contour plotting. As a result, the proposed stability lobe boundary using RBNN consists well with the conventional analytical boundary that is calculated in characteristic equation of transfer function in chatter dynamics. In this RBNN analysis, two input and three output parameters were used in this paper.

  • PDF

스토케스틱 방법에 의한 공작기계의 안정성 해석

  • 김광준
    • 한국정밀공학회지
    • /
    • 제1권1호
    • /
    • pp.34-49
    • /
    • 1984
  • The stability of machine tool systems is analyzed by considering the machining process as a stochastic process without decomposing into machine tool structural dynamics and cutting processes. In doing so the time series analysis technique developed by Wu and Pandit is applied systematically to the relative vibration between cutting tool and work- piece measured under actual working conditions. Various characteristic properties derived from the fitted ARMA(Autoregressive Moving Average) Models and those from raw data directly are investigated in relation with the system stability. Both damping ratio and absolute value of the characteristic roots of the AR part of the most significant dynamic mode are preferred as stability indicating factors to the other pro-perties such as theoretical variance .gamma. (o) or absolute power of the most dominant dynamic mode. Maximum aplitude during a certain interval and variance estimated from raw data are shown to be very sensi- tive to the type of the signal and the location of measurement point although they can be obtained rather easily. The relative vibration signal is also analyzed by FFT(Fast Fourier Transform) Analyzer for the purpose of comparison with the spectrums derived from the fitted ARMA models.

  • PDF

회전톱 재단기의 미세먼지 집진효율 향상을 위한 형상 설계 개선 (Shape Design Improvement of the Rotary Cutting Machine to Improve the Dust Capturing Efficiency using CFD)

  • 김기희;이희남;전완호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.508-511
    • /
    • 2011
  • Dust released from the rotating timber cutting process causes various kinds of diseases as well as safety issues. Although there were lots of efforts to reduce the amount of dust by installing large-sized dust collectors or by using expensive high-quality cutters, they proved to be not so effective. In this study we want to modify and improve the design of the rotary cutter system to prevent dust from being released to the environment as possible by using computational fluid dynamics (CFD) analysis. We have developed CFD models of the conventional cutter and several design modifications. Through the CFD analysis the characteristics of the air flow was predicted, and then the behavior of dust produced during the cutting process was analyzed for different designs. The most efficient design feature to capture dust inside the cutter as much as possible was chosen based on the CFD analysis results. Finally the prototype of the ratary saw machine was constructed and tested to check the dust capturing efficiency, which result is reasonably consistent with the predicted performance through the CFD analysis.

  • PDF

고속 CNC 선반의 동특성 해석과 채터 예측 (Dynamic Characteristics Analysis and Chatter Prediction in High Speed CNC Lathe)

  • 이우석;이신영;이장무
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.151-157
    • /
    • 1999
  • Vibrations in machine tools make many problems in precision, production efficiency, and machine performance. The relative vibration between a workpiece and a tool is very complicated due to many sources. In this study, the dynamic characteristics of a newly developed CNC lathe were analyzed and its chatter characteristics were predicted by a chatter analysis method using finite element analysis and 3 dimensional cutting dynamics. The simulated results showed very complex characteristics of chatter vibration and the borderline of limiting depth of cut was used as the stability limit. To check the validity of this method, cutting tests were done in the CNC lathe using a boring bar as a tool because boring process is very weak due to long overhang . The experimental results showed that the simplified borderline was to be considered as limiting depth of cut at which the chatter vibration starts and the stability limits depended on various cutting parameters such as cutting speed, feed and nose radius of tool.

  • PDF

이송모터 전류신호를 이용한 공구파손 검출 (Tool Breakage Detection Using Feed Motor Current)

  • 정영훈
    • 한국기계가공학회지
    • /
    • 제14권6호
    • /
    • pp.1-6
    • /
    • 2015
  • Tool condition monitoring plays one of the most important roles in the improvement of both machining quality and productivity. In this regard, various process signals and monitoring methods have been developed. However, most of the existing studies used cutting force or acoustic emission signals, which posed risks of interference with the machining system in dynamics, fixturing, and machining configuration. In this study, a feed motor current signal is used as a process signal representing process and tool states in tool breakage monitoring based on an adaptive autoregressive model and unsupervised neural network. From the experimental results using various cases of tool breakage, it is shown that the developed system can successfully detect tool breakage before two revolutions of the spindle after tool breakage.

선반가공시 채터 모델링과 분석에 관한 연구 (A Study on the Modeling and Analysis of Chatter in Turning Operation)

  • 윤문철;조현덕;김성근;김영국;조희근
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.76-83
    • /
    • 2001
  • In this study, the static and dynamic characteristics of turning process was modelled and the analytic realization of regen-erative chatter mechanism was discussed. In this regard, we have discussed on the comparative assessment of recursive times series modeling algorithms that can represent the machining process and detect the abnormal machining behaviors in precision turning operation. In this study, simulation and experimental work were performed to show the malfunction behaviors. For this purpose, new Recursive Extended Instrument Variable Method(REIVM) was adopted for the on-line system identification and monitoring of a machining process. Also, we can apply REIVE algorithms in real process for the detection of chatter frequency and dynamic property and analyze the stability lobe of the system by changing a parameter of cutting dynamics in regenerative chatter mechanics, if it is stable or unstable, Also, The stability lobe of chatter was analysed.

  • PDF