• Title/Summary/Keyword: Cutting Motion Simulation

Search Result 30, Processing Time 0.031 seconds

Cutting Motion Simulator for Nutating Head Type S-axis CNC Laser Cutting Machine (Nutating 헤드 타입 5축 CNC 레이저 절단기용 동작 시뮬레이터)

  • Kang, Jae-Gwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.35-40
    • /
    • 2011
  • 5-axis laser cutting has great advantages when it is applied to three dimensional machining requiring high cutting quality. For developing 5-axis CNC laser cutting systems, however, many problems such as rotating a laser head or a working table, 5-axis servo-control mechanism, tool path generation and post-processing, and collision avoidance between a laser head and a work-piece should be solved. In this paper, we deal with developing a motion simulator for 5-axis laser cutting machine with a nutating cutting head whose rotational axis is in an inclined plane. Two essential modules such as post-processor and cutting motion simulator was developed based on a commercial 3D CAD of UG-NX. The developed system was applied to three dimensional cutting products and showed the validity of the developed methods.

Development of Post-Processor and Cutting Motion Simulator for 5-axis CNC Laser Cutting Machine (5축 레이저 절단기용 포스트프로세서 및 절단 모션 시뮬레이터 개발)

  • Kang, Jae-Gwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.7-13
    • /
    • 2009
  • Five-axis laser cutting has great advantages when it is applied to 3-dimensional machining requiring high cutting quality. For developing 5-axis CNC laser cutting systems, however, many problems such as rotating a laser head or a working table, 5-axis servo-control mechanism, tool path generation and post processing, and collision avoidance between a laser head and a work-piece should be solved. In this paper, we deal with developing a dedicated CAM system based on UG-NX3 for 5-axis laser cutting machine. Two essential modules such as post-processor and cutting motion simulation was developed. The developed system was applied to cutting curve defined on 3-D workpiece in order to show the validity of the proposed methods.

  • PDF

Characteristics of Rotational Vibration of Cutting Edge in Elliptical Vibration Cutting by Modulation of Excitation Frequency (타원궤적 절삭기의 가진주파수에 따른 절삭 날 회전 진동 특성)

  • Loh, Byoung-Gook;Kim, Gi-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.258-263
    • /
    • 2011
  • The direction of the cutting tool plays a critical role in elliptical vibration cutting(EVC) where the cutting tool cuts workpiece in a trochoidal motion. In this study, EVC cutting device was developed using two parallel piezoelectric materials and it was observed that the rotation direction of the tool reverses as the EVC device undergoes resonance at which either flexural(cutting direction) or longitudinal( thrust direction) mode shapes occurs. To analytically explain reversal of the rotation direction, kinematic motion analysis of the tool was modified to incorporate amplification of the vibration amplitude and phase introduced by resonance. It successfully demonstrated, through Matlab simulation, reversal of the rotation direction of the cutting tool as the excitation frequency increases beyond resonance frequencies at which either flexural or longitudinal vibration occurs.

Assessment of Air Flow Misalignment Effects on Fume Particle Removal in Optical Plastic Film Cutting Process

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.51-58
    • /
    • 2020
  • Many types of optical plastic films are essential in optoelectronics display unit fabrication and it is important to develop high precision laser cutting methods of optical films with extremely low level of film surface contamination by fume particles. This study investigates the effects of suction and blowing air motions with air flow misalignment in removing fume particles from laser cut line by employing random particle trajectory simulation and probabilistic particle generation model. The computational results show fume particle dispersion behaviors on optical film under suction and blowing air flow conditions. It is found that suction air flow motion is more advantageous to blowing air motion in reducing film surface contamination outside designated target margin from laser cut line. While air flow misalignment adversely affects particle dispersion in blowing air flows, its effects become much more complicated in suction air flows by showing different particle dispersion patterns around laser cut line. It is required to have more careful air flow alignment in fume particle removal under suction air flow conditions.

Simulation of tracking errors for non-circular cutting using voice coil motor (VCM을 이용한 비원형 형상 가공의 궤적 오차 시뮬레이션)

  • Hwang J.D.;Kwak Y.K.;Kim S.H.;Ahan J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.57-58
    • /
    • 2006
  • A Simulation model is developed to minimize the path tracking errors when the non-circular cutting is done by a VCM(voice coil motor) driven tool. The relationship between PWM(Pulse Width Modulation) duty ratio and velocity of voice coil motor is theoretically derived from combining the circuit equation for the coils and the motion equation for the magnetic rod of the voice coil motor. The path tracking errors are showed differently according to the rotational speed, the number of segments and the control period in digital control. Given a required accuracy in the non-circular cutting, the optimal values for those parameters are determined based on the developed simulation model.

  • PDF

Tool-path Generation for a Robotic Skull Drilling System (로봇을 이용한 두개골 천공 시스템의 공구 경로 생성)

  • Chung, YunChan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.243-249
    • /
    • 2013
  • This paper presents a tool-path generation methods for an automated robotic system for skull drilling, which is performed to access to some neurosurgical interventions. The path controls of the robotic system are classified as move, probe, cut, and poke motions. The four motions are the basic motion elements of the tool-paths to make a hole on a skull. Probing, rough cutting and fine cutting paths are generated for skull drilling. For the rough cutting path circular paths are projected on the offset surfaces of the outer top and the inner bottom surfaces of the skull. The projected paths become the paths on the top and bottom layers of the rough cutting paths. The two projected paths are blended for the paths on the other layers. Syntax of the motion commands for a file format is also suggested for the tool-paths. Implementation and simulation results show that the possibility of the proposed methods.

The Cutting Tool-workpiece Interference Simulation for Worm Screw Machining by Side Milling (워엄 스크루 가공용 사이드 밀링의 공구 간섭 시뮬레이션)

  • Lee, Min-Hwan;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear. For mass production of a high quality worm, the current rolling process is substituted with the milling process. Since the milling process enables the integration of all operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. In this study, the tooling system for side milling on a CNC lathe to improve machinability is developed. However, the cutting tool-workpiece interference is important factors to be considered for producing high quality worms. For adaptability of various worms machining, the tool-workpiece interference simulation system based on a tool-tip trajectory model is developed. The developed simulation system is verified through several kinds of worms and experimental results.

The Cutting Tool-workpiece Interference Simulation for Worm Screw Machining by Planetary Milling (워엄 스크루 가공을 위한 플래내터리 밀링의 공구 간섭 시뮬레이션)

  • Lee, Min-Hwan;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.47-54
    • /
    • 2009
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear. For mass production of a high quality worm, the current rolling process is substituted with the milling process. Since the milling process enables the integration of all operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. In this study, the tooling system for planetary milling on a CNC lathe to improve machinability is developed. However, the cutting tool-workpiece interference is important factors to be considered for producing high quality worms. For adaptability of various worms machining, the tool-workpiece interference simulation system based on a tool-tip trajectory model is developed. The developed simulation system is verified through several kinds of worms and experimental results.

Simulation of Motion Accuracy Considering Loads in Linear Motion Units (부하를 고려한 직선운동유니트의 정밀도 시뮬레이션 기술)

  • Khim, Gyungho;Park, Chun Hong;Oh, Jeong Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.405-413
    • /
    • 2015
  • This paper presents the motion accuracy simulation considering loads such as workpiece weight, cutting force, cogging force of a linear motor, and force caused by misalignment and runout error of a ballscrew in linear motion units. The transfer function method is basically utilized to estimate 5-DOF motion errors, together with the equilibrium equations of force and moment on the table. The transfer function method is modified in order to consider clearance changed according to the loads in the double sided hydrostatic/aerostatic bearings. Then, the analytic model for predicting the 5-DOF motion errors is proposed with the modified transfer function method. Motion errors were simulated under different loading conditions in the linear motion units using hydrostatic, aerostatic, and linear motion bearings, respectively. And the proposed analytic model was verified by comparing the estimated and measured motion errors.

Prediction of Machine Tool's Energy Consumption during the Cutting Process (공작기계의 절삭공정 소비 에너지 예측기술)

  • Lee, Chan-Hong;Hwang, Jooho;Heo, Segon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.329-337
    • /
    • 2015
  • In this paper, a simulation based estimation method of energy consumption of the spindle and feed drives for the NC machine tool during the cutting process is proposed. To predict energy consumption of the feed drive system, position, velocity, acceleration and jerk of the table are analyzed based on NC data and then the power and energy are calculated considering friction force and mass of the stages. Energy consumption of the spindle is estimated based on models from acceleration motion of rotating parts, friction torque and power loss of motors. Moreover, simulation models of cutting power and energy for the material removal along the NC tool paths are proposed.