• Title/Summary/Keyword: Cutting Force Spectrum

Search Result 18, Processing Time 0.023 seconds

Development of mechanistic model for cutting force prediction considering cutting tool states in face milling (정면밀링공정에서 공구상태 변화를 고려한 절삭력예측 모델의 개발)

  • Lee, S.S.;Kim, H.S.;Lee, Y.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.63-73
    • /
    • 1995
  • A mechanistic force system model considering the flank wear for the face milling process has been developed. The model predicts variation of the cutting forces according to flank wear in face milling over a range of cutting conditions, cutter geometries and cutting process geometries including relative positions of cutter to workpiece and rounouts. Flycutting and multitoth cutting teste were conducted on SS41 mild steel with sintered carbide tool. In order to verify the mechanistic force model considering the flank wear of cutting tools, a series of experiments was performed with single and multitooth cutters in various cutting conditions. The results show good agreement between the predicted and measured cutting force profiles and magnitudes in time and frequency domains.

  • PDF

Frequency Spectrum and re Correlation with Cutting Mechanisms in Orthogonal Cutting of Glass Fiber Reinforced Plastics (GFRP의 2차원 절삭에서 주파수 스펙트럼과 절삭메카니즘과의 상호연관성에 관한 연구)

  • Gi-Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.135-142
    • /
    • 2001
  • This study discusses frequency analysis based on the frequency spectrum and process characterization in orthogonal cutting of Fiber-matrix composite materials. A sparsely distributed idealized composite material, namely a glass reinforced polyester(GFRP) was used as workpiece The present method employs a force sensor and the signals from the sensor are processed using the fast Fourier transform(FFT) technique. The experimental correlations between the different chip formation mechanisms and power spectrum me established. Effects of fiber orientation, cutting parameters and tool geometry on the cutting mechanisms me also discussed.

  • PDF

Chatter Mode and Stability Boundary Analysis in Turning (선반가공시 채터 모드 및 안정영역 분석)

  • Oh Sang-Lok;Chin Do-Hun;Yoon Moon-Chul;Ryoo In-Il;Ha Man-Kyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.7-12
    • /
    • 2005
  • This paper presents several time series methods to analyze the chatter mechanics by using the power spectrum of these algorithms considering the cutting dynamics. In this study, several time series models such as AR(burg, forwardbackward, geometric lattice, instrument variable, least square, Yule Walker), ARX(1s, iv4), ARMAX, ARMA, Box Jenkins, Output Error were modeled and compared with one another. Finally, it was proven that time series modelings are also a desirable and reliable algorithm than the other conventional methods(FFT) for the calculation of the chatter mode in turning operation. Also, the spectrum of times series methods is a little bit more powerful than the FFT fer the detection of a high noisy and weak chatter mode. The radial cutting force Fy has been used for spectrum and chatter stability lobe analysis in this study.

A Study on the Cutting Characteristics of SCM440, SNCM21, STS 304 in Cryogenic Cutting(1st Report) (난삭재의 극저온절삭에서의 절삭 특성에 관한 연구)

  • Kim, Chill-Su;Oh, Sun-Sae;Lim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.44-53
    • /
    • 1994
  • We experimented on cutting characteristics-cutting force, behavior of cutting temprature, surface foughness, behavior of chips-under low tempdeature, which generated by liquid nitrogen (77K). The workpieces were freezed to -195 .deg. C and liquid nitrogen was also sprinkled on cutting area in order to increase the efficiency of machining in low temperature. The workpiece was became to -195 .deg. C in 5 minutes, and cutting temperature in CC was lower about 170 .deg. C than NC. The cutting force trended to increase slighty in cooled cutting, but chip thickness was decreased, shear angle was however increased. The form of chips was in good conditions of long or short tubular chips in CC. In CC surface roughness of workpiece was better than NC. In NC surface hardness of chips trended to increase according to increasing of cutting speed, but in CC it trended to decrease. The power spectrum of vertical cutting force trended to increase according to increasing of feed, and in CC it was higher than NC.

  • PDF

Research on the Effect of Cutter Wear on the Torsional Vibration of Spindle in Milling (밀링가공에서 공구마모와 스핀들의 비틀림 진동과의 상관관계에 관한 연구)

  • Kim, Seog-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.62-67
    • /
    • 1999
  • In milling, cutting tool ins directly attached to spindle and this tells that spindle can provide very useful information on the cutting tool condition such as wear or breakage. Since spindle is rotating at a high speed, measuring spindle velocity using a noncontacting measurement system gives the best information which can be obtained. Due to the force applied to spindle through cutting tool, velocity of spindle changes. And any change in cutting tool condition affects cutting force and consequently spindle vibration. With the intent of continuously monitoring cutting tool condition in intermittent machining operations in a benign manner, a noncontacting velocity measurement system using a laser Doppler velocimeter was assembled to measure spindle torsional vibration. Spindle vibration was measured and analysis of it in the frequency domain yielded a measure which corresponded to amount of cutting tool wear in milling.

  • PDF

Cutting force regulation of microdrilling using the sliding mode control (슬라이딩 모드 제어를 이용한 마으크로 드릴의 절삭력 제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.842-846
    • /
    • 1997
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratios larger than 10) is gaining increased attention in a wide spectrum of precision production industries. Alternative methods such as EDM, laser drilling, etc. can sometimes replace mechanical micro-hole drilling but are not acceptable in PCB manufacture because they yield inferior hole quality and accuracy. The major difficulties in micro-hold drilling are related to wandering motions during the inlet stage, high aspect ratios, high temperature,etc. However, of all the difficulties, the most undesirable one is the increase of drilling force as the drill penetrates deeper into hold. This is caused mainly by chip related effects. Peck-drilling is thus widely used for deep hole drilling despite the fact that it leads to low productivity. Therefore, in this paper, a method of cutting force regulation is proposed to achieve continuous drilling. A proportional plus derivative (PD) and a sliding modecontrol algorithm will be implemented for controlling the spinle rotational frequeency. Experimental results will show that sliding mode control reduces the nominal cutting force and its variation better than the PD control, resulting in a number of advantages such as an increase in drill life, fast stabilization of the wandering motion, and precise positioning of the hole.

  • PDF

Diagnosis and Control of Machining States in Micro-Drilling for Productivity Enhancement (미세구멍 가공의 생산성 향상을 위한 상태식별 및 제어)

  • 정만실;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.117-129
    • /
    • 1998
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratio larger than 10) is recently having more attention in a wide spectrum of precision production industries. Alternative methods such as EDM. laser drilling, etc. can sometimes replace the mechanical micro-hole drilling but are not acceptable in PCB manufacture because of the inferior hole quality and accuracy. The major difficulties in micro-hole drilling are related to small signal to noise ratios, wandering motions of the inlet stage, high aspect ratios, high temperatures and so forth. Of all the difficulties. the most undesirable one is the increase of drilling force as the drill proceeds deeper into the hole. This is caused mainly from the chip effects. Peck-drilling is thus widely used for deep hole drilling despite that it suffers from low productivity. In the paper, a method of cutting force regulation is proposed to achieve continuous drilling. A PD and a sliding mode control algorithms were implemented through controlling the spindle rotating frequency. Experimental results show that the sliding mode control reduces the nominal cutting force and the variation of the cutting force better than the PD control. The advantages of the regulation, such as increase of drill life, fast stabilization of a wandering motion, and the precise positioning of the hole are verified in experiment.

  • PDF

Frequency Analysis in Orthogonal Cutting of Glass Fiber Reinforced Composites

  • Park, Gi-Heung
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.52-57
    • /
    • 2000
  • This paper discusses frequency analysis based on frequency spectrum in orthogonal cutting of fiber-matrix composite materials. A glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using a fast Fourier transform (FFT) technique. The experimental correlation between the different chip formation mechanisms and model coefficients are then established. (omitted)

  • PDF

The Characteristics and Stability Boundary Analysis of Chatter using Neural Network (신경회로망을 이용한 채터 특성 및 안정영역 분석)

  • Yoon, Moon-Chul;Kim, Young-Guk;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.16-21
    • /
    • 2006
  • In this study, the analytic realization of chatter mechanism using radial basis neural network(RBNN) was introduced and compared with the conventional stability analysis. In this regard, the FFT and time series spectrum analysis was used as a criterion for the existence of chatter in end-milling force. The desired coded outputs of chatter was trained and finally converged to desired outputs. The output of the RBNN match well with the conventional desired stability lobe. Using this trained data, the stability boundary of the radial basis neural network was acquired using the contour plotting. As a result, the proposed stability lobe boundary using RBNN consists well with the conventional analytical boundary that is calculated in characteristic equation of transfer function in chatter dynamics. In this RBNN analysis, two input and three output parameters were used in this paper.

  • PDF