• Title/Summary/Keyword: Cutting Energy

Search Result 439, Processing Time 0.02 seconds

The Effect of Matrix of Compact Vermicular Graphite Cast Iron on Machinability in Lathe Turning (CV 흑연주철의 기지조직변화가 절삭성에 미치는 영향)

  • An, Sang-Ook;Park, Jong-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.50-62
    • /
    • 1988
  • An experimental investigation of the machining characteristics of compact vermicular cast iron whose matrix were formulated under two kinds of annealing conditions has been conducted. The various characteristics of the machinability of CA cast iron depending upon its matrix and cutting condition have been obtained from the experiment. The results are as follow. As depth of cut increases, the shear stress slightly decreases in order $P_1, \P_2, \P_3$ which are classified by ferrite matrix of CV cast iron. As depth of cut increases, the normal stress increases, and annealing effect in heavy cutting is smaller than that in light cutting. The cutting energy slightly decreases, as depth of cut increases and the effect of annealing on cutting energy in light cutting is higher than that in heavy cutting. The cutting equation in this study are as follow. $P_1\:\2{\phi}\ + \1.49({\beta} - {\alpha} )=84^{\circ}$ $P_2\:\2{\phi}\ + \1.36({\beta} - {\alpha} )=82^{\circ}$ $P_3\:\2{\phi}\ + \1.34({\beta} - {\alpha} )=79^{\circ}$ Machining constants in this study for $P_1, P_2, P_3$give $74^{\circ} , 66^{\circ}, 61^{\circ}$ Tool wear increases as depth of cut increases, and decreases as ferrit matrix increases.

  • PDF

Micro Ultrasonic Elliptical Vibration Cutting (II) Ultrasonic Micro V-grooving Using Elliptical Vibration Cutting (미세 초음파 타원궤적 진동절삭 (II) 타원진동 절삭운동을 이용한 미세 홈 초음파 가공)

  • Kim Gi Dae;Loh Byoung-Gook;Hwang Kyung-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.198-204
    • /
    • 2005
  • For precise micro V-grooving, ultrasonic elliptical vibration cutting (UEVC) is proposed using two parallel piezoelectric actuators, which are energized by sinusoidal voltages with a phase difference of 90 degrees. Experimental setup is composed of stacked PZT actuators, a single crystal diamond cutting tool, and a precision motorized xyz stage. It is found that the chip formed in the process of UEVC is discontinuous because of the periodic contacts and non-contacts occurring between the tool and workpiece. It is experimentally observed that the cutting force in the process of UEVC significantly reduces compared to the ordinary non-vibration cutting. In addition, the creation of burr during UEVC is significantly suppressed, which is attributable to the decrease in the specific cutting energy.

Shape Design of Guillotined Shear Cutters for Steel Pipes (강관의 Guillotine 전단날 형상 설계)

  • Cho Haeyong;Lee Sangmin;Lee Sungkil;Kim Yongyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • The guillotined cutting process for the pipe was studied in this paper. Until now guillotining mechanism can not be practically applied in the industries because of the deformation of sheared section around cutting area, the coarse sheared surface, and the burs. To find optimum shapes of blade, several types of blade were experimentally studied. The cutting force normal to the axial direction of the pipe was compared with the theoretical result based on the cutting energy. The experimental maximum cutting forces were very good agreement with the theoretical results. It also discussed that the design parameters of guillotining system such as the blade shape and the clearance between the blade and the die made effects to the deformation of the cutting cross section area. The results show that the guillotining method can be applicable to the pipe cutting system by optimizing the blade shape and the clearance between the blade and the die of the guillotined cutting system with respect to the sheared pipe material.

Abrasive-Assisted High Energy Water-Jet Machining Characteristics of Solid Wood

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • The application of abrasive-assisted high energy water-jet was investigated as a possible new method of cutting wood. In this study the maximum cutting speeds for species of various wood density were determined and water-jet machining characteristics were investigated for sixteen Korean domestic species. The maximum cutting speed ranged from 200 to 750 mm/min. The results indicate that wood density affects machining characteristics such as maximum cutting speed, surface roughness, and kerf width. Roughness of surface generated increased and kerf width decreased as penetration depth increased.

Prediction of Consumed Electric Power on a MQL Milling Process using a Kriging Meta-Model (크리깅 메타모델을 이용한 MQL 밀링공정의 소비전력 예측 연구)

  • Jang, Duk-Yong;Jung, Jeehyun;Seok, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.353-358
    • /
    • 2015
  • Energy consumption reduction has become an important key word in manufacturing that can be achieved through the efficient and optimal use of raw materials and natural resources, and minimization of the harmful effects on nature or human society. The successful implementation of this concept can only be possible by considering a product's entire life cycle and even its disposal from the early design stage. To accomplish this idea with milling, minimum quantity lubrication (MQL) strategies and cutting conditions are analyzed through process modeling and experiments. In this study, a model to predict the cutting energy in the milling process is used to find the cutting conditions, which minimize the cutting energy through a Kriging meta-modeling process. The MQL scheme is developed first to reduce the amount of cutting oil and costs used in the cutting process, which is then employed for the entire modeling and experiments.

A Study on the Cutting Mechanism and Energy with Saw-toothed Chip (톱니형Chip의 절삭기구와 Energy에 관한 연구)

  • Kim, Hang-Young;Oh, Seok-Hyung;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.3
    • /
    • pp.44-51
    • /
    • 1987
  • In metal cutting various types of chips are produced in consequence of cutting conditions. Flow-type chips have been studied in most cases because they are easier to be analyzed, but the actual surfaces of chips are not smooth, but crushed. This paper deals with saw-toothed chips, special types of flow-type chips, which have deep concaves and high convexes and sharp angles on the free surface. I tried to establish the theory of saw-toothed chip mechanism through experimental observation, that is, the mathmatical model of the cutting energy and cutting mechanism through the geometrical observation of the chips by using a microscope. The results obtained are as follows: 1. The mechanism of saw-toothed chips is diffenent from that of general flow-chips. 2. In the case of saw-toothed chips, the shear angle must be measured by the hypotenuse angle and the rake angle, and the shear angle is more affected by the rake angle than by the hypotenbuse angle. 3. The friction angle is represented by .beta. = . pi. /4+ .alpha./ sub n/- .phi. which is different from Merchant's equation. 4. The pitch and the slip are greatly influenced by depth of cut, but the influence of the rake angle on it is small. 5. The normal stress and the shear stress on the shear plane decrease with the increase of the cutting depth, and they are almost independent on the variation of a rake angle. 6. The unit friction energy on the tool face, the unit shear energy on the shear plane, and the total cutting energy per unit volume decrease with the increase of rake angle and cutting depth.

  • PDF

Assessment of rock cutting efficiency of an actuated undercutting disc (구동형 언더커팅 디스크의 절삭효율 평가)

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.199-209
    • /
    • 2021
  • Alternative methods of rock cutting have been introduced to substitute and to improve the traditional mechanical rock excavation methods (e.g., TBM and roadheader). Undercutting methods have been recently studied in some countries. In undercutting, several additional cutting parameters are involved in its cutting process compared to the traditional rock-cutting. As a fundamental study, this paper introduces the concept of undercutting method with actuated disc, lab-scaled testing system, and testing procedures of undercutting by the system. Also, we present the calculation methods of cutter forces and specific energy, and discuss the results of undercutting tests compared to those of traditional rock-cutting methods.

The Shear and Friction Characteristics Analysis of Inconel 718 during End-milling process using Equivalent Oblique Cutting System I -Up Endmilling- (등가경사절삭 시스템에 의한 Inconel 718 엔드밀링 공정의 전단 및 마찰특성 해석 I -상향 엔드밀링-)

  • Lee, Young-Moon;Yang, Seung-Han;Choi, Won-Sik;Song, Tae-Seong;Gwon, O-Jin;Choe, Yong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.79-86
    • /
    • 2002
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting system. According to this analysis, when cutting Inconel 718, 61, 64 and 55% of the total energy is consumed in the shear process with the helix angle 30$^{\circ}$, 40$^{\circ}$ and 50$^{\circ}$ respectively, and the balance is consumed in the friction process. With the helix angle of 40$^{\circ}$ the specific cutting energy consumed is smaller than with the helix angle 30$^{\circ}$ and 50$^{\circ}$.

Process Optimization for the Laser Cutting of Cold Rolled STS Sheet (냉연 스테인리스강판의 레이저 절단 특성)

  • 이기호;김기철
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.59-68
    • /
    • 1996
  • This study was aimed to characterize the laser cutting process for the cold rolled stainless steel sheet. The principal process parameters of the cutting process were applied to both the continuous wave form and the pulsed wave form for the laser output mode. The laser-oxygen cutting process and the laser-nitrogen cutting process were also considered to characterize the quality and efficiency of the cutting process. The laser-oxygen cutting process revealed the better productivity than the laser-nitrogen cutting process, since the laser energy and the exothermic oxidation energy exerted on the laser-oxygen cutting process simultaneously during the entire cutting process. However, the straightness of the cutting section, which was considered as the most important factors, was inferior to that of the laser-nitrogen cutting process due to the formation of chromum oxide on the cutting surface. Frequency and duration of the pulsed wave form act as the main factors for the better quality, When the frequency increased from 100 Hz to 200 Hz and the duty increased from 20% to 40%, the quality factors such as the height of dross and the surface roughness were improved remarkably. The increase in the frequency from 200 Hz to 300 Hz, on the other hand, revealed the less effective in the cutting quality.

  • PDF

A study on the Theoretical of Three Dimensional Cutting Force Used Energy Method (에너지 방법을 이용한 삼차원 절삭력의 이론적 여측에 관한 연구)

  • Kim, Jang-Hvung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.3
    • /
    • pp.95-105
    • /
    • 1984
  • The purpose of this paper is to predict the cutting force, utilizing new model of double cutting edge which has normal rake angle and tool inclination angle. Changing side, back rake angle and side cutting edge angle in the new model. Three dimensional cutting force was obtained by the use of .eta. /c=i proposed by Stabler and energy method for three dimen- sional cutting force. Theoretical results has been calculated with development of optimization algorism which can be put into three dimensional theory, using the method of least square with orthogonal cutting data. IT is proved that three dimensional cutting force is to be predicted accurately only if orthogonal cutting force by equalizing theoretical result and experimental result has been calculated.

  • PDF