• 제목/요약/키워드: Cutting Energy

검색결과 439건 처리시간 0.024초

Rock cutting behavior of worn specially-shaped PDC cutter in crystalline rock

  • Liu, Weiji;Yang, Feilong;Zhu, Xiaohua;Zhang, Yipeng;Gong, Shuchun
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.249-263
    • /
    • 2022
  • The specially-shaped Polycrystalline Diamond Compact (PDC) cutter is widely used in drill bit design due to its advantages of high rock cutting efficiency, strong impact resistance and long service life in hard and abrasive formation drilling. A detailed understanding of rock cutting behavior of worn specially-shaped PDC cutter is essential to improve the drilling efficiency and decrease the drilling costs. In this paper, the theoretical models of two new principles (loading performance (LP) and cutting performance (CP)) are derived for evaluating the cutting process of worn specially-shaped cutter, the theoretical models consider the factors, such as cutter geometry, aggressiveness, stress state, working life, and rock cutting efficiency. Besides, the numerical model of heterogeneous granite is developed using finite element method combined with Voronoi tessellation, the LP and CP of 12 kinds of worn specially-shaped PDC (SPDC) cutters are analyzed. The results found that the mechanical specific energy (MSE) of worn cutters first increase and then decrease with increasing the cutting depth, and the MSE increase with the increase of back rake angle except for Conical cutter and Wedge-shaped cutter. From the perspective of CP, the worn PDC cutters are more suitable for the smaller cutting depths, and the back rake angle has little effect on the CP of the specially-shaped worn PDC cutters. Conical cutter, Saddle-shaped cutter and Ellipse-shaped cutter have the highest CP value, while Rhombus-shaped cutter, Convex cutter and Wedge-shaped cutter have the lowest value in selecting cutters. This research leads to an enhanced understanding of rock-breaking mechanisms of worn SPDC cutters, and provides the basis to select of specially-shaped PDC cutters for the specific target formation.

Nd : YAG레이저의 가공 파라메터가 절단 성능에 미치는 영향에 관한 연구 (The Effects on Cutting Performance by Machining Parameters of Nd : YAG Laser)

  • 한응교;박두원;이범성;이명호;임흥순
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.1-12
    • /
    • 1992
  • 본 연구에서는 가공기 자체의 파라메터와 성능에 관한 연구로서 출력 에너지 가 서로 다른 가공기를 사용하여 SUS 304 스테인리스 시험편을 관통, 절단하면서 출력 에너지와 최대 출력을 비교하여 보고, 시험편 관통시 주파수와 출력 에너지와의 관계, 시험편 관통시 응융 금속 제거량에 의한 절단 속도의 예측, 서로 다른 출력의 가공에 있어서 슬릿 절단 폭, 커프 폭, 드로스 길이, 절단면의 표면 거칠기 등을 비교하여 출 력차에 따른 가공 특성을 고찰하였다.

기초공통개념으로서 에너지에 대한 3~9학년 학생들의 문항 반응 분석 (Item Response Analysis of Energy as a Cross-Cutting Concept for Grades 3 to 9)

  • 김영민;강남화;강훈식;맹승호;이준기
    • 한국과학교육학회지
    • /
    • 제36권6호
    • /
    • pp.815-833
    • /
    • 2016
  • 이 연구에서는 기초공통개념으로서 에너지에 대한 학습발달과정연구의 기초 자료를 제공하기 위하여 3~9학년 학생들의 평가 문항 응답 결과를 분석하였다. 검사 문항은 전기 회로, 낙하 물체의 역학적 에너지, 물질의 상태 변화, 용해 현상, 생물체의 생명 현상, 먹이 사슬, 태양과 지구의 복사평형, 및 물의 순환계에서 에너지에 대한 이해를 조사하는 순위 선다형 문항으로 구성되었다. 학생들의 응답 결과는 학년별, 선택지 수준별 응답 빈도에 따라 교차분석을 실시하였고, Rasch 모델을 적용한 문항반응 분석으로서 Wright map 및 DIF 분석을 수행하였다. 연구 결과, 8가지 주제들에 대하여 에너지 이해의 발달과정은 현상과 에너지의 관련성을 인식하거나 에너지의 종류를 파악, 에너지의 이동과 전달을 인식, 에너지가 다른 형태로 전환 및 변환됨을 인식, 에너지의 보존을 인식하는 순서로 진행된다는 경험적 근거를 확보할 수 있었다. 전체 학년에 걸쳐서 공통적으로 8개 주제에 대하여 에너지 보존에 대한 이해가 부족하였다. 학년이 높아짐에 따라 에너지의 전달과 전환에 대한 이해 수준은 주제들마다 다소 차이가 있었다. Rasch 모델을 적용한 문항 반응을 분석한 결과 학생들은 다른 현상의 에너지에 비해 용해 현상의 에너지를 가장 쉬운 과제로 인식하였고 물의 순환 과정에서 에너지 이해를 가장 어려운 과제로 인식하였다. 이 연구의 결과는 에너지의 관점에서 각 주제들이 초중등 과학 교육과정의 어느 학년에, 몇 번째 단원에 어떤 방식으로 배치되어야 할 것인지는 경험적인 연구 자료로서 활용될 수 있으며, 새 과학 교육과정의 내용 체계를 구성할 때 고려할 수 있는 중요한 시사점이 될 수 있었다.

Machinability investigation of gray cast iron in turning with ceramics and CBN tools: Modeling and optimization using desirability function approach

  • Boutheyna Gasmi;Boutheyna Gasmi;Septi Boucherit;Salim Chihaoui;Tarek Mabrouki
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.119-137
    • /
    • 2023
  • The purpose of this research is to assess the performance of CBN and ceramic tools during the dry turning of gray cast iron EN GJL-350. During the turning operation, the variable machining parameters are cutting speed, feed rate, depth of cut and type of the cutting material. This contribution consists of two sections, the first one deals with the performance evaluation of four materials in terms of evolution of flank wear, surface roughness (2D and 3D) and cutting forces. The focus of the second section is on statistical analysis, followed by modeling and optimization. The experiments are conducted according to the Taguchi design L32 and based on ANOVA approach to quantify the impact of input factors on the output parameters, namely, the surface roughness (Ra), the cutting force (Fz), the cutting power (Pc), specific cutting energy (Ecs). The RSM method was used to create prediction models of several technical factors (Ra, Fz, Pc, Ecs and MRR). Subsequently, the desirability function approach was used to achieve a multi-objective optimization that encompasses the output parameters simultaneously. The aim is to obtain optimal cutting regimes, following several cases of optimization often encountered in industry. The results found show that the CBN tool is the most efficient cutting material compared to the three ceramics. The optimal combination for the first case where the importance is the same for the different outputs is Vc=660 m/min, f=0.116 mm/rev, ap=0.232 mm and the material CBN. The optimization results have been verified by carrying out confirmation tests.

WS2 윤활제를 첨가한 마이크로 다이아몬드 블레이드의 절삭성능과 기계적 특성 (Cutting Efficiency and Mechanical Characteristics of Diamond Micro-blades Containing WS2 Lubricant)

  • 김송희;장재철
    • 한국표면공학회지
    • /
    • 제45권1호
    • /
    • pp.37-42
    • /
    • 2012
  • $WS_2$ powder was added to the Cu/Sn bond metal of diamond micro-blades for machining of semi-conductor and IC chips to improve cutting efficiency. The effect of $WS_2$ additive on cutting efficiency was investigated and compared with the micro-blades with $MoS_2$ developed in previous research. Flexural strength, frictional coefficient, and wear resistance of blades decreased with $WS_2$ but wear depth increased. It was found that the blades including $WS_2$ consumed less momentary energy than the blades containing $MoS_2$ during dicing test. Micro-blades containing $WS_2$ exhibited lower flexural strength than the blades with $MoS_2$ resulting from higher amount of sintering defects relevant to the less effectiveness of $WS_2$ on fluidity. The effect of $WS_2$ and $MoS_2$ on fluidity during sintering was analyzed in terms of mismatching degree between the longitudinal direction of lubricant particles and the perpendicular direction to the compact loading. The blade with 8.1 vol.% of $WS_2$ showed the best cutting efficiency.

워터젯을 이용한 화강암 천공과 절삭 특성에 관한 연구 (Studies on Drilling and Cutting Characteristics for Granite Rocks Using Waterjets)

  • 오태민;홍은수;조계춘
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1338-1345
    • /
    • 2009
  • Although rock excavation is necessary for the effective utilization of urban space, most conventional rock excavation methods, including the blasting method, cause high noise and vibration. Meanwhile, if a high pressure waterjet system is applied to excavate underground spaces in urban areas, the public grievance can be reduced by low noise and vibration. In this study, an abrasive waterjet system is designed and developed to study the influence of various performance parameters such as jet pressure, nozzle traverse speed, stand-off distance, or abrasive feed rate on waterjet excavation performance in laboratory. Using the developed waterjet system, rock drilling characteristics are identified by measuring drilling depths as a function of the jet exposure time. The drilling depth linearly increases with increasing the jet exposure time(under 60sec). Rock cutting characteristics are also obtained with various jet pressures(1600~3200kg/$cm^2$) and nozzle traverse speeds(1.9~14.1mm/s): The cutting depth is nonlinearly related to the jet pressure and traverse speed. Indeed, the cutting depth increases with an increase in the jet pressure and a decrease in the nozzle traverse speed. This trend can be explained by energy transferring/loss mechanism.

  • PDF

초미립 WC 소재 엔드밀 공구의 성능 평가에 관한 연구 (A Study on the Performance Evaluation of End Mill Tool Fabricated by Ultra-Fine WC)

  • 김도형;우용원;이현호;김정석
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1-8
    • /
    • 2007
  • The ultra-fine tungsten carbide(WC) powders have been actively used in the cemented carbides industry, because they have excellent mechanical properties such as high hardness, strength, and toughness. In this study, ultra-fine WC-Co alloys powders have been fabricated by thermochemical and thermomechanical process such as spray conversion process or high energy ball milling. The non-coated end-mill which is made of ultra-fine tungsten carbide is investigated by measuring cutting force, tool wear, tool life, and surface roughness profile according to cutting length. The machining test was conducted with high hardened workpiece and their performances are investigated in high speed cutting conditions. Also, the relationship between the machining characteristics and the Co contents are investigated under various high speed cutting conditions.

$\mu$-BGA 절단을 위한 레이저 가공 파라미터 연구 (The study of laser processing parameter for $\mu$-BGA cutting)

  • 백광렬;이천
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.652-655
    • /
    • 2001
  • In this paper, I have studied minimization of the kerf-width and surface burning which are occurred after the singulation process of multi layer $\mu$-BGA( thickness 1.1 mm, 0.9 mm) with a pulsed Nd:YAG( = 532 nm, repetition rate = 10 Hz) laser. The thermal energy of a pulsed Nd:YAG laser is used to cut the copper layer. I have studied are minimization of the surface burning and kerf-width using a photo resist, $N_2$blowing and polyester double sided tape as a cutting parameter. The $N_2$blowing reduces a laser energy loss by debris and suppresses a surface carbonization. Also, I have studied characters of cutting with a choice of side of laser beam incidence. The SEM(Scanning Electron Microscope), non-contact 3D inspector and high-resolution microscope are used to measure kerf width and surface state. The optimum value of 1.1 mm $\mu$-BGA singulation is 524 $\mu$m that is reduced kerf width of 60 % with $N_2$blowing. And I obtained reduction of carbonization of 68 % with a polyester double side tape in 0.9 mm $\mu$-BGA. I used laser intensity of 1.91$\times$10$^{6}$ / $\textrm{cm}^2$ in this study.

  • PDF

충격력 에 의한 공작기계 동특성 규명 연구 (A Study on Indentification of Machine Tool Dynamics by Impulse Shock)

  • 신민재;이종원
    • 대한기계학회논문집
    • /
    • 제7권2호
    • /
    • pp.138-144
    • /
    • 1983
  • To evaluate the dynamic characteristics of machine tool system, the system is modelled as a closed-loop system composed of cutting process and improved machine tool structures. The proposed machine tool structure model is constructed in consideration of energy transfer through the system. A new methodology to identify the machine tool dynamics by adopting impulse response and impulse cutting techniques is also proposed. It is shown that the methodology is successfully applied to a machine tool system to identify its dynamic characteristics employing the improved model.

Using Chemical and Biological Approaches to Predict Energy Values of Selected Forages Affected by Variety and Maturity Stage: Comparison of Three Approaches

  • Yu, P.;Christensen, D.A.;McKinnon, J.J.;Soita, H.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권2호
    • /
    • pp.228-236
    • /
    • 2004
  • Two varieties of alfalfa (Medicago sativa L cv. Pioneer and Beaver) and timothy (Phleum pratense L cv. Climax and Joliette), grown at different locations in Saskatchewan (Canada), were cut at three stages [1=one week before commercial cut (early bud for alfalfa; joint for timothy); 2=at commercial cut (late bud for alfalfa; pre-bloom head for timothy); 3=one week after commercial cut (early bloom for alfalfa; full head for timothy)]. The energy values of forages were determined using three approaches, including chemical (NRC 2001 formula) and biological approaches (standard in vitro and in situ assay). The objectives of this study were to determine the effects of forage variety and stage of maturity on energy values under the climate conditions of western Canada, and to investigate relationship between chemical (NRC 2001 formula) approach and biological approaches (in vitro and in situ assay) on prediction of energy values. The results showed that, in general, forage species (alfalfa vs. timothy) and cutting stage had profound impacts, but the varieties within each species (Pioneer vs. Beaver in alfalfa; Climax vs. Joliette in timothy) had minimal effects on energy values. As forage maturity increased, the energy contents behaved in a quadratic fashion, increasing at stage 2 and then significantly decreasing at stage 3. However, the prediction methods-chemical approach (NRC 2001 formula) and biological approaches (in vitro and in situ assay) had great influences on energy values. The highest predicted energy values were found by using the in situ approach, the lowest prediction value by using the NRC 2001 formula, and the intermediate values by the in vitro approach. The in situ results may be most accurate because it is closest to simulate animal condition. The energy values measured by biological approaches are not predictable by the chemical approach in this study, indicating that a refinement is needed in accurately predicting energy values.