• Title/Summary/Keyword: Cutting Edge

Search Result 764, Processing Time 0.026 seconds

Form Error Prediction in Side Wall Milling Considering Tool Deflection (측벽 엔드밀 가공에서 공구 변형을 고려한 형상 오차 예측)

  • 류시형;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.43-51
    • /
    • 2004
  • A method for form error prediction in side wall machining with a flat end mill is suggested. Form error is predicted directly from the tool deflection without surface generation by cutting edge locus with time simulation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacturing. This study contributes to real time surface shape estimation and cutting process planning for the improvement of form accuracy.

MOWING PERFORMANCE OF BUSH CUTTER EQUPPED WITH A FIXED BLADE DEVEOPED TO PREVENT BODILY INJURIES IN OPERATION

  • Yamashita, J.;Tsurusaki, T.;Doi, H.;Sekino, M.;Setoguti, R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.666-675
    • /
    • 1993
  • In order to prevent bodily injuries frequently suffered in using bush cutters, especially from spattered stones, we developed a unique new cutting system equipped with a fixed blade on top of the rotary blade, and checked into the mowing performance of the cutter. From experimental test of mowing efficiency and measuring test of physical stress (O$_2$ consumption and heartbeat rates) , the new cutting system with a fixed blade proved that it keeps good cutting performance with lower peripheral speed of the rotary blade(22m/sec), compared to that of ordinary cutting blade, yielding more safety in operation. Weight of the cutter head is, however, heavier than that of ordinary machine by about 70% which increased a physical stress on the operator with slightly faster heartbeat rates. In mowing along edge of concrete wall, the operator enjoyed using the cutter with no anxiety , owing to function of the fixed blade.

  • PDF

A study on effects of the fiber orientation and point angle on drilling characteristics of carbon fiber epoxy composite materials (탄소섬유 에폭시 복합재료의 드릴링 특성에 있어 섬유 배열방향과 선단각의 영향에 관한 연구)

  • Kim, Hyeong C.;Lee, Woo Y.;Namgung, Suk.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.119-125
    • /
    • 1997
  • The drilling experiment of carbon fiber epoxy composite material with WC-drill has been done under the various cutting conditions in order to minimize the problems occurred in the material while being drilled. It has been confirmed by a frequency analysis of the cutting force signals that the variation of cutting force resulted from the periodic variation of the angle between the ortating drill and the stacking angle of the carbon fiber. By the drilling experiment with several drills having different point angles, the drilling char- acteristics, which show the relations between the change in the point angle and cutting force or external surface condition, were analyzed.

  • PDF

Analysis of the Chip Shape in Turing (I) -Analysis of the Chip Flow Angle- (선삭가공의 칩형상 해석 (I) -칩흐름각 해석-)

  • 이영문;최수준;우덕진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.139-144
    • /
    • 1991
  • Chip flow angle is one of the important factors to be determined for the scheme of Chip Control. Up to now, however, a dependable way to predict the chip flow angle in practical cutting has not been established satisfactorily. In this paper a rather simple theoretical prediction of chip flow angle is tried based on some already widely confirmed hypotheses. The developed equation of chip flow angle contains the parameters of depth of cut d, feed rate f, nose radius $r_{n}$ side cutting edge angle $C_{s}$, side rake angle .alpha.$_{s}$ and back rake angle .alpha.$_{b}$. Theoretical results of chip flow angle given by this study bas been shown in a good agreement with experimental ones.s.s.s.s.

A Study on the In-process Detection of Fracture of Endmill by Acoustic Emission Measurement (음향방출을 이용한 가공중의 엔드밀 파손 검출에 관한 연구)

  • Yoon, Jong-Hak;Kang, Myung-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.75-82
    • /
    • 1990
  • Automatic monitoring of the cutting conditions is one of the most improtant technologies in machining. In this study, the feasibility in applying acoustic emission(AE) signals for the in-process detection of endmill wear and fracture has been investigated by performing experimental test on the NC vertical milling machine with SM45C for specimen. As the results of detecting and analyzing AE signals on various cutting conditions, the followings have confirmed. (1) The RMS value of acoustic emission is related sensitively to the cutting velocity, but is not affected largely by feed rate. (2) The burst type AE signals of high level have been observed when removing chips distorderly and discontinuously. (3) When the RMS value grows up rapidly due to the increase of wear the endmill are generally broken or fractured, but when the endmills fracture at the conditions of smooth chip-flow or built-up-edge(BUE) occurred frequently, the rapid change of the RMS arenot found. And it is expected that this technigue will be quite useful for in-process sensing of tool wear and fracture.

  • PDF

A Study on the Effects of Products Section by Cutting Punch's Edge Angle during Roll Forming Process (롤 포밍 공정에서 컷팅 펀치 인선 각도가 제품 절단에 미치는 영향에 관한 연구)

  • Cheong, Mun-Su;Kim, Sei-Whan;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.44-49
    • /
    • 2016
  • The roll forming produces mass products using the continuous production process. Also we need the process that continuous long material or goods cutting into a desired length. Our study uses 3-D driving cutter and roll forming material as SPCC to investigate this. When we cut the material using the process of roll forming, the shear resistance is raised at the cutting punch's edge. The result is remained the trouble about burr and progressive deformation on the material. This study shows the method minimizing the above trouble. The material of punch was considering heat generated on the continuous production process. So we used the type of STD 61 for the material of punch and had the vacuum heat treatment for the surface hardness of HRC 53. The structure of the mold is designed with forming a double cam die at the upper punch and the both sides of central core. We conducted the experiment three times. In the result when had to make V-groove within the angle between 105 and 110 on the punch front end, we could get the minimum shear resistance on the punch front end. Also with the same condition we minimizes the material jams in the continuous production process.

Retrospection on Agricultural Mechanization Researches (농업기계화 연구에 대한 고찰)

  • 이동현;박원규
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.453-462
    • /
    • 1999
  • At the time of discontinuing the publishing of RDA Journal of Farm management and agricultural engineering the present paper is to review the research results produced since 1962 to 1998. During the three decades, from 1960s to 1980s, the main research efforts were focused o mechanization of rice farming which contributed in food grain productions. In the 1990s, the research direction was shifted to horticultural productions and producing high quality agricultural products. We had put stress on practical use of farm mechanization, mainly on transplanting and seeding operation for rice and upland and horticultural crops productions and harvest and threshing machinery developments, in which we thought our research direction had not been quite right. However, in the future we are going to promote mechanization on livestock and upland crops productions. Furthermore, we have a plan to employ cutting edge technologies in agricultural machinery developments in order to automate and unman all farm operations satisfying the needs of advanced agricultural mechanization technology in the twenty first century.

  • PDF

The effect of wear on the damage of slitting knife (Slitting Knife의 손상에 미치는 마모의 영향)

  • Nam, Ki-Woo;Kim, Cheol-Soo;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.5-11
    • /
    • 2016
  • This study analyzed the damage to a slitting knife after cutting steel sheets. Damages to the structure were observed and wear tests were conducted. In addition, the degradation on the damaged and undamaged parts was compared with a micro Vickers hardness test. Weibull statistical analysis was carried out in order to evaluate the reliability of the micro Vickers hardness measured data. Spalling of the edge portion occurred by degradation during use over a long period. Rough parts in the specimens were caused by damage because the slitting knife was used for 1 year. The friction coefficient and wear loss at the damaged parts of the knife edge were slightly larger from shock due to repetitive cutting operation. The micro Vickers hardness followed a two-parameter Weibull probability distribution.

Development of laser process for stencil manufacturing (스텐실 제작용 레이저 공정기술 개발)

  • 신동식;이영문;이제훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.989-992
    • /
    • 1997
  • The objective of this study is to develop stencil cutting process and determine optimal conditions which make good-quality stencil by using a Nd:YAG laser. The effects of process parameters such as laser power, type of mask, gas pressure, cutting speed and pulse width on the cut edge quality were investigated. In order to analyze the cut surface characteristics(roughness, kerf width, dross) optical microscopy, SEM photography and roughness test were used. A a results, the optimal conditions of process parameters were determined, and the practical feasibility of the proposed system is also examined by using a commercial gerber file for PCB stencil manufacturing.

  • PDF

A Study o burr formation along helix angle in end milling (엔드밀 가공시 헬리스각 변화에 따른 버어형성에 관한 연구)

  • 장성민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.485-491
    • /
    • 1999
  • A burr is formed in every corner of parts as a result of machining, which produces undesirable edge geometry and influence deeply to surface quality of workpiece. Therefore these burrs must be removed certainly. The cost of removing these burrs is directly proportional to their size. Burrs have been among the most troublesome obstruction to high productivity and automation of machining processes. The proper selection of cutting condition and tool geometry will be helpful to reduce the occurrence of burrs. In paper will observe burr formation along helix angle in end milling and certificate experimentally mechanics relation of helix angle and burr formation.

  • PDF