• 제목/요약/키워드: Cutting Direction

검색결과 335건 처리시간 0.026초

공구간섭과 절삭성을 고려한 자유 곡면의 4, 5축 NC 가공을 위한 공구 경로 산출 (Interference-Free Tool Path with High Machinability for 4- and 5-Axes NC Machining of Free-Formed Surfaces)

  • 강재관
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.146-153
    • /
    • 1998
  • NC machines with 4 or 5 axes are capable of various tool approach motions, which makes interference-free and high machinablity machining possible. This paper deals with how to integrate these two advantages (interference-free and high machinability machining) in multi-axes NC machining with a ball-end mill. Feasible tool approach region at a point on a surface is first computed, then among which an approach direction is determined so as to minimize the cutting force required. Tool and spindle volumes are considered in computing the feasible tool approach region, and the computing time is improved by trans-forming surface patches into minimal enclosing spheres. A cutting force prediction model is used for estimating the cutting force. The algorithm is developed so as to be applied to 4- or 5-axes NC machining in common.

  • PDF

볼 엔드밀을 이용한 금형 구면 가공의 표면품질 향상에 관한 연구 (Surface Quality Improvements on the Spherical Shaped Mold using Ball End Milling)

  • 윤일우;황종대
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.71-76
    • /
    • 2020
  • Various machining methods are being studied to improve the processing quality of the spherical R shape in press die. In this paper, we confirmed that changes in machining quality were associated with changes in cutting direction, path, and cutting angle, which are commonly used in the machining of molds. We obtained a surface roughness graph with each condition change in one specimen using an instrument that measured geometry and surface roughness simultaneously. The results of the study showed that the best surface roughness in the finish cut of the spherical surface was obtained using upward pick feed machining.

자동 절단과 부하 감응 제어 기술을 적용한 양날 도로절단기 개발 (Development of a Double-blades Road Cutter with Automatic Cutting and Load Sensing Control Technology)

  • 서명국;강명철;박종호;김영진
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권1호
    • /
    • pp.53-58
    • /
    • 2024
  • With the recent development of intelligence and automation technologies for construction machinery, the demand for safety and efficiency of road-cutting operations has continued to increase. In response to this, a double-blade road cutter has been developed that can automatically cut roads. However, a double-blade road cutter has a load difference between the two blades due to the ground and wear conditions of the cutting blades. The difference in load between the two blades distorts the direction of travel of the cutter. In this study, a vision sensor-based driving guide technology was developed to correct the driving path of road cutters. In addition, we developed a load-sensing technology that detects blade loads in real-time and controls driving speed in the event of overload.

On 5-Axis Freeform Surface Machining Optimization: Vector Field Clustering Approach

  • My Chu A;Bohez Erik L J;Makhanov Stanlislav S;Munlin M;Phien Huynh N;Tabucanon Mario T
    • International Journal of CAD/CAM
    • /
    • 제5권1호
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach based on vector field clustering for tool path optimization of 5-axis CNC machining is presented in this paper. The strategy of the approach is to produce an efficient tool path with respect to the optimal cutting direction vector field. The optimal cutting direction maximizes the machining strip width. We use the normalized cut clustering technique to partition the vector field into clusters. The spiral and the zigzag patterns are then applied to generate tool path on the clusters. The iso-scallop method is used for calculating the tool path. Finally, our numerical examples and real cutting experiment show that the tool path generated by the proposed method is more efficient than the tool path generated by the traditional iso-parametric method.

절삭 반경에 따른 U-type 유로 형상의 버 제거율에 관한 연구 (The Study on Burr Removal Rate Along the Cutting Radial Distance in U-type Flow Channel)

  • 손출배;이정희;곽재섭
    • 한국기계가공학회지
    • /
    • 제18권7호
    • /
    • pp.8-13
    • /
    • 2019
  • As increasing demand for precise machining in advanced disciplines, especially in semi-conductor, aeronautical and automotive industries, the magnetic abrasive deburring(MAD) which is able to eliminate micro-sized burr on complex surface in less time has drawn the attention in the last decades. However, the performance of MAD is subject to shape and size of a tool. Therefore, this study aim to identify deburring behavior of MAD in U-type flow channel by measuring the length rate of burr removal in radial distance of the cylindrical tool under four process factors. In order to evaluate the deburring effect of MAD on the surface, finishing regions are divided based on center of the circular cutting tool. As a results, it was defined that the amount of burr removal in a downward direction moving toward flow channel from the top surface was higher than upward direction. This is because the magnetic abrasives were detached from magnetic lines of force due to geometrical shape.

비원형 단면의 선삭 가공시 발생하는 진동해석 (Vibration Analysis of a Lathe Performing Non-Circular Cutting)

  • 신응수;박정호
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.291-298
    • /
    • 2000
  • This paper intends to provide an analytic vibrational model of non-circular cutting by a lathe and to investigate its stability criteria. A single degree-of-freedon model based on the orthogonal cutting theory has the characteristics of parametric excitation due to the nonlinear cutting force that changes periodically its direction as well as its magnitude. The Floquet theory has been applied to investigate the stability of the linearized system and the stability diagrams have been obtained with respect to the ovality, the cut velocity and the cut depth. Also nonlinear analysis has been performed to verify the linear analysis and compare the results with those from circular cutting. Results show that a critical cut depth is decreased as the ovality is increased while a critical cut velocity is increased as the ovality is increased. Also, a good agreement in critical conditions has been observed between the linear and nonlinear analyses for the ovality less than 2%. Accordingly, the linear analysis can be said to be applicable for most practical oval cuttings whose ovality are much less than 2%.

  • PDF

농업기계화 연구에 대한 고찰 (Retrospection on Agricultural Mechanization Researches)

  • 이동현;박원규
    • Journal of Biosystems Engineering
    • /
    • 제24권5호
    • /
    • pp.453-462
    • /
    • 1999
  • At the time of discontinuing the publishing of RDA Journal of Farm management and agricultural engineering the present paper is to review the research results produced since 1962 to 1998. During the three decades, from 1960s to 1980s, the main research efforts were focused o mechanization of rice farming which contributed in food grain productions. In the 1990s, the research direction was shifted to horticultural productions and producing high quality agricultural products. We had put stress on practical use of farm mechanization, mainly on transplanting and seeding operation for rice and upland and horticultural crops productions and harvest and threshing machinery developments, in which we thought our research direction had not been quite right. However, in the future we are going to promote mechanization on livestock and upland crops productions. Furthermore, we have a plan to employ cutting edge technologies in agricultural machinery developments in order to automate and unman all farm operations satisfying the needs of advanced agricultural mechanization technology in the twenty first century.

  • PDF

STD11 금형강의 고속가공에서 가공정밀도 향상에 관한 연구 (A Study on the Improvement of Machining Accuracy in High Speed Machining of STD11)

  • 이춘만;최치혁;정원지;정종윤;고태조;김태형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.329-334
    • /
    • 2002
  • High-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate, spindle revolution and cutting force are control factors. The effect of the control factors on machining accuracy is discussed for the results of surface roughness and machining error in Z-direction for the high speed machining of STD11.

  • PDF

3축 그라인딩 로봇을 이용한 자동 경로 생성 및 능동 컴플라이언스 힘 제어 (Auto Path Generation and Active Compliance Force Control Using 3-axis Grinding Robot)

  • 추정훈;김수호;이상범;김정민
    • 제어로봇시스템학회논문지
    • /
    • 제12권11호
    • /
    • pp.1088-1094
    • /
    • 2006
  • In this paper, an auto path generation and an active compliance grinding control using 3-axis farce sensor are presented. These control algorithms enable the grinding robot to follow unknown path of various workpiece shape pattern. The robot is able to go grinding along unknown paths by position controller managing tangential direction angle and cutting speed, with only information about the start position and the end position. Magnitude and direction of normal force are calculated using force data that go through low pass filter. Moreover, normal and tangential directions are separated for force control and velocity control, respectively.

공작기계의 이송계 제어 시스템의 최적화 (Optimization of Motion Control System on the Machine Tool)

  • 박인준;곽경남;백형래
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.336-340
    • /
    • 1997
  • This paper is a study about motor technic of motion and feedforward control in order to shape cutting control on the machine tool. The shape error caused by delay of the servo system in the direction of radius at the time of circular cutting is reduced by feedforward control, shape error generated by the position command delay is minimized by using the acceleration/deceleration time constant after the interpolation. The study was verified to optimization of motion control on experiments of a vertical machining center of the machine tool.

  • PDF