• 제목/요약/키워드: Cutting Analysis

검색결과 1,699건 처리시간 0.027초

절삭력 신호특성과 히스토그램 분석에 의한 공구마모와 파손 진단 (Diagnosis of tool wear and fracture using cutting force signal characteristics and histogram analysis)

  • 정진용;유기현;서남섭
    • 한국정밀공학회지
    • /
    • 제14권3호
    • /
    • pp.75-81
    • /
    • 1997
  • Automatic monitoring the cutting state is one of the important problems to increase the reliability of modern machining processes. In this study, cutting force signals were used in order to monitor the tool wear and fracture in the turning process. Turning experiments were performed using cemented carbide insert tools(K20) and STS304 steel as a workpiece. Cutting force signal characteristics and histogram analysis method were used to recognize the cutting states. It was found that tool wear and fracture can be diagnosed from the cutting force signal coefficient of variation(C.V.) and histogram analysis.

  • PDF

플라즈마 이온주입 공구의 가공조건이 절삭력과 표면 거칠기에 미치는 영향 분석 (Analysis of the Effects of Cutting Force and Surface Roughness in the Cutting Conditions of Plasma Source Ion Implantation Tools)

  • 강성기
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.755-760
    • /
    • 2012
  • In this study, three dimensional cutting force components and surface roughness appeared in high speed cutting by using tungsten carbide endmill tools implanted ion or not found mutual relations through several analysis of statistical dispersion. It is showed that cutting force(Fx) is affect with spindle speed and feed rate, cutting force(Fy) is affect with spindle speed and ion implantation time and cutting force(Fz) is affect with feed rate in interaction through the statistical method of ANOVA of cutting force and surface roughness, it is analyzed that it is affected of spindle speed and feed rate in surface roughness.

엔드밀링 공구의 유한요소해석을 통한 이송속도 스케줄링의 기준 절삭력 산출 (Calculation of a reference force for feedrate scheduling using the FEM analysis of a tool)

  • 이한울;조동우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.416-421
    • /
    • 2004
  • Off-line feedrate scheduling is presented as the advanced technology to regulate cutting forces at the desired level through change of feedrates. In rough cutting, the feedrate scheduling aims at reducing the machining time, which is the most important factor for better productivity. Thus, the largest force which can avoid breakage of tool shank and tooth is a reference force for feedrate scheduling in rough cutting. In this paper, a calculation method of the reference cutting force for feedrate scheduling is developed. This model calculates rupture plane of tooth using the FEM analysis of a tool and computes the reference force using the transverse rupture strength of a tool. Experiments validate that the presented feedrate scheduling model reduced machining time drastically and regulate cutting forces at the reference cutting force.

  • PDF

절삭가공시 절삭력 신호의 카오스적거동에 관한 규명 (Verification on Chaotic Behavior of Cutting Force in Metal Cutting)

  • 구세진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.96-100
    • /
    • 1996
  • So far the analysis and modeling of cutting process is studied commonly assumed as being linear stochastic or chaotic without experimental verification. So we verified force signals of cutting process(ball end-milling) is low-dimensional chaos by calculating Lyapunov Exponents. reconstructing attractor using time delay coordinates and calcula-ting it's fractal dimension.

  • PDF

피삭제와 공구재종의 상관관계에 근거한 절삭조건의 최적화(II) (Optmization of Cutting Condition based on the Relationship between Tool Grade and Workpiece Material (2nd. Report))

  • 한동원;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.169-172
    • /
    • 1995
  • In optmizing cutting condition for face milling operation, tool wear is an important maching factor. For the purpose of establishing the relationship between various maching factor and tool wear, cutting tests have been performed. As a result, hardness and chemical composition of workpiece material, chemical compositition and grain size of cutting tool and cutting speed have been selected as machining factor. In addition, relationship between feed rate and workpiece hardness has been observed. Prior to utilizing cutting condition recommended by 'Machining Data Hardbook(MDH)' as a Knowledge base, an analysis for the validity has been provided. Based on this analysis, tool life criteria applied by MDH has been modifiied. Finaly, using MDH recommended data for neural network trainning, we can compensate the result form the trained neural network for optimizing cutting condition for some given workpice and cutting tool.

  • PDF

단인과 다인 정면밀리의 가공특성에 관한 연구 (A Study on Machining Characteristics of Single-insert and Multi-insert Face Milling)

  • Kim, S.I.;Lee, W.R.;Kim, T.Y.
    • 한국정밀공학회지
    • /
    • 제12권4호
    • /
    • pp.19-27
    • /
    • 1995
  • Face milling is required to study cutting process with a view of multipoint cutter. This experimental study mainly deals with the single and multi-insert cutting characteristics using coated tool. Because metal cutting of the single and multi-insert has a large relation to the improvement of productivity, the economic cutting process can be achieved by the analysis of proper metal cutting mechanism. Therefore, machining characteristics of face molling in this paper has been studied by investigating the role of different insert number which is concerned with mean cutting force, the RMS values of AE(acoustic emission) signal, tool life and surface roughness in milling SS 41 and SUS 304. The cutting force and AE signal are monitored to make an analysis of cutting process. The surface roughness of the specimens machined by inserts of different numbers is measured at different speeds, feeds and depth of cut. The width of flank wear is also observed.

  • PDF

유한요소법을 이용한 마이크로 평엔드밀링에서의 공구변형 예측 (Tool Deflection Estimation in Micro Flat End-milling Using Finite Element Method)

  • 임정수;조희주;서태일
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.498-503
    • /
    • 2010
  • The main purpose of this study strongly concerned micro machining error estimation by using FEM analysis of tool deflection shapes in micro flat end-milling process. For the precision micro flat end-milling process, analysis of micro cutting errors is mandatory. In general, tool deflection is a major factor which causes cutting error and limits realization of the high-precision cutting process. Especially, in micro end-milling process, micro tool deflection generates very serious problems in contrast to macro tool deflection. Methods which deal with compensation of cutting error by tool deflection in macro end-milling process have been studied plentifully but, few researches transact with micro scaled cutting tool deflection in micro cutting process. Therefore, the trend of micro tool deflection was estimated by using FEM analysis in this paper. Cutting forces were acquired by micro dynamometer and these were utilized in FEM analysis. In order to verify FEM analysis results, micro machining processes were carried out and real machined profiles were compared with FEM results. Finally through the proposed approach well suited FEM results were obtained.

엔드밀 가공시 절삭조건에 따른 절삭력의 비선형 해석 (Nonlinear Analysis of Cutting Force Signal according to Cutting Condition in End Mill Machining)

  • 구세진;강명창;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.161-164
    • /
    • 1995
  • Nonlinear analysis of various phenomena has been developed with improvement of computer. The characteristics form nonlinear analysis are available in monitoring and diagnosis state of system. There are many nonlinear property in cutting process, but nonlinear signals have been considered as noise. In this study, nonlinear analysis technique is applied and it will be verified that cutting force is chaos by calculating Lyapunov exponents,fractal dimension and embedding dimension. The relation between characteristic parameter calculated form sensor signal and various cutting condition is investigated.

  • PDF

절단에 따른 용접부 잔류응력 재분포 해석 (Analysis of residual stress redistribution of weldment due to cutting)

  • 양승용;구병춘;최성규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1074-1079
    • /
    • 2003
  • In this paper, we conducted finite element analysis to investigate the residual stress redistributions of weldment due to cutting. To evaluate the effect of the residual stress on the fatigue behavior of weldment, test specimens are commonly cut from the weldment, but the distributions of the residual stress in the cut specimen should be different from those in the original weldment. Our work is to evaluate the difference between the residual stresses before and after weldment-cutting to understand the effect of cutting on the residual stress. Transient heat analysis, elastic-plastic mechanical analysis and element removal technique are used to simulate the welding and cutting procedures on the commercial finite element code ABAQUS.

  • PDF

VLM-s 공정을 위한 EPS 폼의 단순 경사 열선 절단시 절단 경사각이 절단폭과 모서리 형상에 미치는 영향 (Effects of Cutting Angle on Kerf width and Edge Shape in the Hotwire Cutting of EPS Foam for the Case of Single-Sloped Cutting for VLM-s Process)

  • 안동규;양동열
    • Journal of Welding and Joining
    • /
    • 제21권5호
    • /
    • pp.525-533
    • /
    • 2003
  • The dimensional accuracy and global roughness between successive layers of VLM-s, which is a new rapid prototyping process using hotwire cutter and EPS foam, depend significantly on the operating parameters of hotwire cutter. In the present study, the effect of cutting angle on the kerf width and edge shape in hotwire cutting of EPS foam for the case of single-sloped cutting with one cutting angle was investigated. Through single-sloped cutting tests, the modified relationship between kerf width and effective heat input, considering the effect of the cutting angle, and the relationship between the melted area and the cutting angle were obtained. In order to investigate the effect of cutting angles on the thermal field in EPS foam, transient heat transfer analyses using single-sloped volumetric heat flux model and locally-conformed mesh were performed. Through the comparison between experimental and numerical results, it was shown that the proposed analysis model is needed to estimate the three-dimensional temperature distribution of the EPS foam for the case of single-sloped hotwire cutting.