• Title/Summary/Keyword: Cutter surface

Search Result 178, Processing Time 0.024 seconds

An Integrated System for Computer-Aided Design and Manufacturing of Sculptured Surface (자유곡면 가공을 위한 CAD/CAM 시스템)

  • Kim, K.S.;Choi, Y.H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.1
    • /
    • pp.37-49
    • /
    • 1991
  • This report describes an integrated approach to sculptured surface design and manufacture, and a software package for it on a multi-axis NC milling machine. The integrated software consists of four parts : (1) surface fitting procedure for generating the characteristic polyhedron from 3 dimensional CMM data, (2) surface description for generating the mathematical representation of sculptured surfaces. (3) tool path generation for approximating the surface representation into a sequence of linear cutter paths, and (4) tool control for generating the corresponding joint variable values. This integrated approach is generally applicable to sculptured surface manufacturing where multi-axis milling machines are necessary to produce smooth three-dimensional surfaces.

  • PDF

Uniform Scallop Height Tool Path Generation Using CL Surface Deformation (CL면 변형 방법을 이용한 균일한 조도의 공구 경로 생성)

  • Yang Min-Yang;Kim Su-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.895-903
    • /
    • 2005
  • In this paper, we present a cutter location (CL) surface deformation approach for constant scallop height tool path generation from triangular mesh. The triangular mesh model of the stereo lithography (STL) format is offset to the CL surface and then deformed in accordance with the deformation vectors, which are computed by the slope and the curvature of the CL surface. In addition, the tool path which is computed by slicing the deformed CL surface is inversely deformed by those same deformation vectors to a tool path with a constant scallop height. The proposed method is implemented, and a tool path generated by the proposed method is tested by simulation and by numerical control (NC) machining. The scallop height was found to be constant over the entire machined surface, demonstrating much better quality than that of mesh slicing, under the same constraints for machining time.

Prediction of the Machined Surface Roughness using Geometrical Characteristic Lines (기하학적 특징선을 이용한 밀링 가공면의 표면 조도 예측)

  • 정태성;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.66-69
    • /
    • 2003
  • This paper presents the procedures for the evaluation of the maximum surface roughness and the shapes of the cut remainder employing the ridge method. The shapes and the heights of the cut remainder are estimated by overlapping adjacent ridges in consideration of the various machining parameters: the feedrate. the path interval. The maximum surface roughness in plane cutting modes are derived as a function of the maximum effective cutter radius, R$\_$eff,max/. and the path interval ratio, $\tau$$\_$fp/, The predicted results are compared with the values estimated by the conventional roughness model.

  • PDF

High speed milling titanium alloy (Ti 합금의 고속가공시 밀링특성에 관한 연구)

  • Ming CHEN;Youngmoon LEE;Seunghan YANG;Seungil CHANG
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.454-459
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration, the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. the chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number og shear ribbons and bigger shear angle than at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability region, depression of temperature increment, auti-fatigability as well as surface roughness. The burrs always exists both at low cutting speed and at high cutting speed. So the deburr process should be arranged for milling titanium alloy in any case.

  • PDF

Optimization of a geometric form and cutting conditions of a metal slitting saw by experimental method (실험적 방법을 통한 Metal slitting saw의 형상 및 절삭 조건의 최적화)

  • 정경득;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.934-938
    • /
    • 2000
  • Built-up edge affects the surface integrity of the machined surface and tool wear. Tool geometry and cutting conditions are very important factors to remove BUE. In this paper, we optimized the geometry of the metal slitting saw .1nd cutting conditions to remove BUE by the experiment. In general, the metal slitting saw is plain milling cutter with thickness less of a 3/16 inch. This is used for cutting workpiece where high dimensional accuracy and surface finish are necessary. The experiment was planned with Taguchi method that is based on the orthogonal array of design factors(coating, rake angle, number of tooth, cutting speed, feed rate). Response table was made by the value of the surface roughness, the optimized tool geometry and cutting conditions through response table could be determined. In addition. the relative effect of factors were identified by the variance analysis. filially. coating and cutting speed turned out important factors.

  • PDF

Modeling of Functional Surface using Modified B-spline (수정 B-spline을 이용한 기능성 곡면의 Modeling)

  • 황종대;정종윤;정윤교
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.156-163
    • /
    • 2003
  • This research presents modeling of a functional surface which is a constructed free-formed surface. The modeling introduced in this paper adopts modified B-spline that is utilizing approximating technique. The modified B-Spline is constructed with altered control vertices. It is applied to measure points on a surface of an impeller blade. This research builds a surface-modeler accepting inputs of measured points. Generation of cutter-paths for NC machining employs the model of the constructed surfaces. The machined surfaces which is generated in several cases are compared in the aspect of machining accuracy.

Ball end milling of sculptured surface models by considering machinability (절삭성을 고려한 자유곡면 모형의 볼 엔드 밀링가공에 관한 연구)

  • 박천경;맹희영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2048-2061
    • /
    • 1991
  • As compared with other cutting types, the ball end milling process causes a complexity in cutting system and a falling-off of machinability. In order to increase the productivity and efficiency in th NC machining of sculptured surfaces, this study carried out the qualitative linearized evaluation about the ball end milling system and applied their practical expressions to the technological processor at the cutter path planning stage. The evaluated expressions were proved to be adequate for practical use from an accuracy point of view and the estimation models were applied to sculptured surface machining processes for finding variable machining conditions. Consequently, it was recognized that variable machining conditions bring about the dispersion of force system and the reduction of machining time by more than 50%.

Pencil Curve Tracing via Virtual Digitizing (가상 측정을 통한 펜슬곡선 추출)

  • 박정환;김보현;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.253-266
    • /
    • 1997
  • Pencil-curve machining, which is a single-pass ball-end milling along a concave edge on adie surface, is widely employed in die-surface machining. The cutter-path used for pencil-curve machining, which is the trajectory of the “ball-center point” of a ball-endmill sliding along a concave-edge region on the die surface, is called pencil-curve. Presented in the paper is a pencil-curve tracing algorithm in which “concave-type” sharp edges are computed from a “virtually digitized” model of the tool-envelope surface. The resulting “initial” pencil-cures are then refuted by applying a series of fairing operations. illustrative examples and methods for enhancing accuracy are also presented. The proposed pencil-curve tracing algorithm has been successfully implemented in a commercial CAM system specialized in die-machining and in the CAD/CAM system CATIA.

  • PDF

Modeling of a Functional Surface using a Modified B-spline

  • Hwang, Jong-Dae;Jung, Jong-Yun;Jung, Yoon-Gyo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • This research presents modeling of a functional surface that is constructed with a free-formed surface. The modeling of functional surfaces, being introduced in this paper, adopts a modified B-spline that utilizes an approximating technique. The modified B-Spline is constructed with altered control vertices. It is applied to measure the surface of an impeller blade. This research builds an algorithm accepting inputs of measured points. Generating the cutter-paths for NC machining employs the model of the constructed surfaces. The machined surfaces that are generated in several cases are compared with each other in the aspect of machining accuracy.

Tool-Path Generation using Sweep line Algorithm (스윕라인 알고리즘을 이용한 공구경로의 생성)

  • Seong, Kil-Young;Jang, Min-Ho;Park, Sang-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Proposed in the paper is an algorithm to generate tool-path for sculptured surface machining. The proposed algorithm computes tool path by slicing offset triangular mesh, which is the CL-surface (Cutter Location surface). Since the offset triangular mesh includes invalid triangles and self-intersections, it is necessary to remove invalid portions. For the efficient removal of the invalid portions, we extended the sweep line algorithm. The extended sweep line algorithm removes invalid portions very efficiently, and it also considers various degeneracy cases including multiple intersections and overlaps. The proposed algorithm has been implemented and tested with various examples.