• 제목/요약/키워드: Cutmix

검색결과 2건 처리시간 0.015초

음성위조 탐지에 있어서 데이터 증강 기법의 성능에 관한 비교 연구 (Comparative study of data augmentation methods for fake audio detection)

  • 박관열;곽일엽
    • 응용통계연구
    • /
    • 제36권2호
    • /
    • pp.101-114
    • /
    • 2023
  • 데이터 증강 기법은 학습용 데이터셋을 다양한 관점에서 볼 수 있게 해주어 모형의 과적합 문제를 해결하는데 효과적으로 사용되고 있다. 이미지 데이터 증강기법으로 회전, 잘라내기, 좌우대칭, 상하대칭등의 증강 기법 외에도 occlusion 기반 데이터 증강 방법인 Cutmix, Cutout 등이 제안되었다. 음성 데이터에 기반한 모형들에 있어서도, 1D 음성 신호를 2D 스펙트로그램으로 변환한 후, occlusion 기반 데이터 기반 증강기법의 사용이 가능하다. 특히, SpecAugment는 음성 스펙트로그램을 위해 제안된 occlusion 기반 증강 기법이다. 본 연구에서는 위조 음성 탐지 문제에 있어서 사용될 수 있는 데이터 증강기법에 대해 비교 연구해보고자 한다. Fake audio를 탐지하기 위해 개최된 ASVspoof2017과 ASVspoof2019 데이터를 사용하여 음성을 2D 스펙트로그램으로 변경시켜 occlusion 기반 데이터 증강 방식인 Cutout, Cutmix, SpecAugment를 적용한 데이터셋을 훈련 데이터로 하여 CNN 모형을 경량화시킨 LCNN 모형을 훈련시켰다. Cutout, Cutmix, SpecAugment 세 증강 기법 모두 대체적으로 모형의 성능을 향상시켰으나 방법에 따라 오히려 성능을 저하시키거나 성능에 변화가 없을 수도 있었다. ASVspoof2017 에서는 Cutmix, ASVspoof2019 LA 에서는 Mixup, ASVspoof2019 PA 에서는 SpecAugment 가 가장 좋은 성능을 보였다. 또, SpecAugment는 mask의 개수를 늘리는 것이 성능 향상에 도움이 된다. 결론적으로, 상황과 데이터에 따라 적합한 augmentation 기법이 다른 것으로 파악된다.

개인정보보호를 위한 다중 유형 객체 탐지 기반 비식별화 기법 (Multi-type object detection-based de-identification technique for personal information protection)

  • 길예슬;이효진;류정화;이일구
    • 융합보안논문지
    • /
    • 제22권5호
    • /
    • pp.11-20
    • /
    • 2022
  • 인터넷과 웹 기술이 모바일 장치 중심으로 발전하면서 이미지 데이터는 사람, 텍스트, 공간 등 다양한 유형의 민감정보를 담고 있다. 이러한 특성과 더불어 SNS 사용이 증가하면서 온라인 상의 개인정보가 노출되고 악용되는 피해 규모가 커지고 있다. 그러나 개인정보보호를 위한 다중 유형 객체 탐지 기반의 비식별화 기술에 관한 연구는 미흡한 상황이다. 이에 본 논문은 기존의 단일 유형 객체 탐지 모델을 병렬적으로 이용하여 다중 유형의 객체를 탐지 및 비식별화하는 인공지능 모델을 제안한다. Cutmix 기법을 통해 사람과 텍스트 객체가 함께 존재하는 이미지를 생성하여 학습 데이터로 구성하고, 사람과 텍스트라는 다른 특징을 가진 객체에 대한 탐지 및 비식별화를 수행하였다. 제안하는 모델은 두 가지 객체가 동시에 존재할 때 0.724의 precision과 0.745의 mAP@.5 를 달성한다. 또한, 비식별화 수행 후 전체 객체에 대해 mAP@.5 가 0.224로, 0.4 이상의 감소폭을 보였다.