• Title/Summary/Keyword: Cutibacterium acnes

Search Result 21, Processing Time 0.019 seconds

Anti-acne Properties of Artemisia annua Extract In Vitro (개똥쑥 추출물의 항여드름 효능확인)

  • You, Jiyoung;Roh, Kyung-Baeg;Oh, Se-young;Jung, Yong-Taek;Park, Deokhoon;Jung, Eunsun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.3
    • /
    • pp.247-254
    • /
    • 2021
  • Acne vulgaris is a chronic inflammatory skin disease related to pilosebaceous unit. In acne lesions, hyperseborrhea, dysseborrhea, inflammatory event, and an imbalance in skin microflora, particularly an increase in Cutibacterium acnes (C. acnes) colonization comparing to other bacteria, have been observed. The objective of this study was to evaluate anti-acne effects of Artemisia annua extract (AAE) on antibacterial activity related to preservation of the balance in skin microbiome, inhibition of inflammation, and reduction of excessive sebum production. When C. acnes and Staphylococcus epidermidis (S. epidermidis) were co-cultured in the presence of AAE, the reduction of C. acnes growth by AAE was greater than that of S. epidermidis. In addition, when C. acnes was cultured in a medium containing AAE (C. acnes AAE), levels of cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 and toll-like receptors-2 activity were decreased in comparison with C. acnes cultured in a medium without AAE (C. acnes CM). Moreover, AAE significantly inhibited excessive sebum production induced by palmitic acid. These results suggest that AAE, as a natural extract with various targets, can inhibit selective growth of C. acnes and inflammatory reactions derived from C. acnes, which are the main causes of acne, and consequently can be used as a substance to alleviate acne by reducing excessive sebum formation.

Evaluation of the EtOAc Extract of Lemongrass (Cymbopogon citratus) as a Potential Skincare Cosmetic Material for Acne Vulgaris

  • Kim, Chowon;Park, Jumin;Lee, Hyeyoung;Hwang, Dae-Youn;Park, So Hae;Lee, Heeseob
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.594-601
    • /
    • 2022
  • This study evaluated the biological properties of lemongrass (Cymbopogon citratus) extracts. The EtOAc extract of lemongrass had DPPH, TEAC, and nitric oxide-scavenging activity assay results of 58.06, 44.14, and 41.08% at the concentration of 50, 10, and 50 ㎍/ml, respectively. The EtOAc extract had higher elastase and collagenase inhibitory activities than the 80% MeOH, n-hexane, BuOH, and water extracts and comparable whitening activity toward monophenolase or diphenolase. Also, the EtOAc fraction had higher lipase inhibitory and antimicrobial activities against Cutibacterium acnes among extracts which is known to an important contributor to the progression of inflammatory acne vulgaris, and an opportunistic pathogen present in human skin. Total phenolic and flavonoid concentrations in the EtOAc extract were 132.31 mg CAE/g extract and 104.50 mg NE/g extract, respectively. Biologically active compounds in lemongrass extracts were analyzed by LC-MS. This study confirms that lemongrass extracts have potential use as cosmetic skincare ingredients. Thus, lemongrass can be considered a promising natural source of readily available, low-cost extracts rich in antioxidant, skincare, and antimicrobial compounds that might be suitable for replacing synthetic compounds in the cosmeceutical industry.

Biosynthesis of Compound K, a biologically active saponin of ginseng(Panax ginseng) by bioconversion (인삼(Panax ginseng)으로부터 생물전환을 이용한 생리활성물질인 Compound K의 생합성)

  • Kim, MooSung;Kim, Ja-i;Jung, Kyung-Hwan;Yu, Kwang-Won;Moon, Gi-Seong;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1335-1344
    • /
    • 2021
  • Ginsenoside Compound K is a triterpene saponin found in the leafs, stems and roots of Panax ginseng. This study aimed to prepare a valuable ginsenoside Compound K using ginseng extracts with the enzyme(Plantase). Plantase showed very efficient activity to produce Compound K from ginseng extracts. Plantase exhibited the highest activity at pH 5 and 50 ℃, as a result of investigating the yield of Compound K by changing the temperature and pH, while fixing the enzyme concentration to 10% or 15% over 48 hours of reaction time. Under optimium conditions, Plantase produced and accumulated Compound K over 35 wt% of whole ginseng extracts. Antimicrobial activitiy of bioconvertied ginseng extracts showed selectivity against Cutibacterium acnes KCTC 3314. Minimal inhibitory concentration (MIC) of bioconverted ginseng extract (35% of Compound K enriched extract) against Cutibacterium acnes KCTC 3314 strain is 31.25ug/mL. These results suggest that the Compound K enriched extract is potential materials for cosmetic products and Plantase is a very useful enzyme for Compound K production.

Study on the Properties of Lagerstroemia indica Extract as an Anti-acne Cosmetic Material (배롱나무 꽃 추출물의 항여드름 화장품 소재로서의 특성 연구)

  • Jiyoung You;Se-young Oh;Yeji Im;Suwon Jeon;Kyung-Baeg Roh;Song-ah Choi;Eunae Cho;Deokhoon Park;Eunsun Jung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.19-27
    • /
    • 2024
  • This study is to propose Lagerstroemia indica flower as an anti-acne cosmetic material, and confirmed the sebum control, anti-inflammatory, and antioxidant effects using Lagerstroemia indica flower extract (LIFE) . As a result of evaluating the sebum control effectiveness, it was confirmed that LIFE inhibited the production of sebum excessively induced with palmitic acid up to 65%. Subsequently, it was confirmed that LIFE has an antibacterial effect and the ability to inhibit lipase activity against Cutibacterium acnes (C. acnes), which mainly appears in acne lesions, and can also reduce the inflammatory response caused by virulence factors secreted by C. acnes. It was also confirmed that LIFE inhibited the secretion of nitrogen monoxide (NO) and prostaglandin E2 (PGE2), which are inflammatory mediators induced by LPS in macrophages, by 75% and 54%, respectively, and that it also had a high DPPH radical scavenging ability similar to that of ascorbic acid. These results suggest that LIFE, a natural extract, can be used as an anti-acne material to relieve and treat acne, a complex disease, by controlling sebum production and having antibacterial and lipase activity inhibiting against C. acnes, and anti-inflammatory, antioxidant properties.

Antioxidant, Antimicrobial and Anti-inflammatory Effect of Boehmeria nivea var. nipononivea Extracts (섬모시풀(Boehmeria nivea var. nipononivea) 추출물의 항산화, 항균 및 항염증 효과에 대한 연구)

  • Jung, Gi Soo;Lee, Sun Hee;Yang, Soo-Kyung;Moon, Sung Pil;Song, Gwanpil;Kim, Ji Young
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.339-348
    • /
    • 2020
  • The purpose of this study was to investigate the possible use of the Boehmeria nivea var. nipononivea extract and fractions for the development of natural cosmetic ingredients. The leaves of B. nivea var. nipononivea, extracted by 70% ethanol, were sequentially fractionated with n-hexane, dichloromethane, ethylacetate, and n-butanol. As a result of DPPH and ABTS test, ethyl acetate fractionation was shown to be excellent in radical scavenging activity. For the antimicrobial activities against Staphylococcus aureus, Staphylococcus epidermidis, Cutibacterium acnes and antibiotic resistant strains, MIC and birth control rate were observed by paper disc method. In the antibacterial activity by the disc diffusion assay against S. aureus, S. epidermidis and C. acnes, the dichloromethane and ethylacetate fraction showed stronger antibacterial activity than the other fractions and extract. Moreover, the ethylacetate fraction showed strong nitric oxide (NO) production inhibitory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell. In conclusion, we found that B. nivea var. nipononivea extract was not cytotoxic and showed antioxidant, antimicrobial and anti-inflammatory effects. These results suggest that the Boehmeria nivea var. nipononivea extract and fractions could be applied as an effective cosmetic material with antioxidant activity.

A Study on Inhibition of Bacterial Membrane Formation in Biofilm formed by Acne Bacteria in Valine through Property Analysis (물성 분석을 통한 Valine 의 여드름균 바이오필름 내부 세균막 형성 억제 연구)

  • Song, Sang-Hun;Hwang, Byung Woo;Son, Seongkil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.163-170
    • /
    • 2021
  • This study was conducted to create a technology to remove acne bacteria with human-friendly materials. First, the Cutibacterium acnes (C. acnes) were adsorbed to the mica disc to grow, and then the biofilm was checked through an atomic microscope to see if the biofilm had grown. Based on the topographic image, the shape changed round, the size was 17% longer on average, and the phase value of the resonance frequency separating materials was observed as a single value, the biofilm grown by covering the extracellular polymeric substrate (EPS). As a result of processing 50 mM of amino acids in the matured biofilm, the concentration of C. acnes decreased when valine, serine, arginine and leucine were treated. Scanning with nanoindentation and AFM contact modes confirmed that the hardness of biofilms treated with Valine (Val) increased. This indicates that an AFM tip measured cell which may have more solidity than that of EPS. The experiment of fluorescent tagged to EPS displays an existence of EPS at the condition of 10 mM Val, but an inhibition of growth of EPS at the 50 mM Val. Number of C. acnes was also reduced above 10 mM of Val. Weak adhesion of biofilm generated from an inhibition of EPS formation seems to induce decrease of C. acnes. Accordingly, we elucidated that Val has an efficiency which eliminates C. acnes by approach of an inhibition of EPS.

A report of 22 unrecorded bacterial species in Korea, isolated from Namhangang

  • Baek, Chaeyun;Yi, Hana
    • Journal of Species Research
    • /
    • v.7 no.2
    • /
    • pp.114-122
    • /
    • 2018
  • As part of a larger study of indigenous prokaryotic species diversity in South Korea, various samples from Namhangang were subjected to analyses. Fresh water, underwater sediment, and moss-inhabiting aerobic and anaerobic bacteria were isolated. 22 of the isolates were identified as unrecorded bacterial species in Korea that had ${\geq}98.7%$ 16S rRNA gene sequence similarity with published species. The aerobic strains isolated were Kurthia gibsonii and Massilia plicata. Also identified were four facultative anaerobic strains: Bacillus hisashii, Enterococcus rotai, Paenibacillus vini, and Pediococcus pentosaceus. 16 strictly anaerobic strains were identified as Bacteroides xylanolyticus, Carnobacterium maltaromaticum, Clostridium argentinense, Clostridium beijerinckii, Clostridium butyricum, Clostridium cavendishii, Clostridium diolis, Clostridium frigidicarnis, Clostridium perfringens, Clostridium saccharoperbutylacetonicum, Clostridium sphenoides, Clostridium subterminale, Cutibacterium acnes, Paraclostridium bifermentans, Prevotella paludivivens, and Romboutsia lituseburensis. Based on the examination of morphological, cultural, physiological, and biochemical properties of the isolates, descriptive information of these previously unrecorded species is provided here.

Wrinkle Improvement, Whitening Effect of Boseong Camellia sinensis Vaccum Distilled Extract and Antioxidant, Antibacterial Efficacy of its Hydrothermal Extract (보성녹차 감압증류추출물의 주름개선, 미백 효능과 열수추출물의 항산화, 항균효과)

  • Lee, Kwang Won;Hong, Jung Hyun;Chung, Sun Hwa;Kim, Young Kyun;Park, Shinsung;Park, Su In;Shin, Moon Sam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.845-855
    • /
    • 2021
  • In this study, Camellia sinensis Leaf cultivated in Boseong was extracted by vacuum distillation and hydrothermal extraction methods, and we performed in vitro experiments such as antioxidant, anti-wrinkle, whitening, and antibacterial activity test and HPLC analysis. Wrinkle improvement (elastase inhibition assay) and whitening effect (mushroom tyrosinase inhibition assay) of Boseong vacuum distilled extract have excellent results and IC50 values of vacuum distillation extract was measured at a lower concentration than that of the hydrothermal extract. The antioxidant activity of the Boseong hydrothermal extract was excellently measured in DPPH radical and ABTS+ radical scavenging activity, SOD-like activity, and total polyphenol content. In the antibacterial experiment, the Boseong hydrothermal extract formed a clear zone for the Staphylococcus aureus and Cutibacterium acnes strain. As a result of HPLC analysis, EGCG and caffeine in the hydrothermal extract were 40.29 mg/g, 9.94 mg/g respectively, and caffeine in the vacuum distilled extract was 3.40 mg/g. Therefore, we examined that Boseong Camellia sinensis vacuum distilled extract has excellent anti-wrinkle and whitening effect, and its hydrothermal extract has good antioxidant and antibacterial efficacy.

Influence of Panax ginseng formulation on skin microbiota: A randomized, split face comparative clinical study

  • Hou, Joon Hyuk;Shin, Hyunjung;Shin, Hyeji;Kil, Yechan;Yang, Da Hye;Park, Mi Kyeong;Lee, Wonhee;Seong, Jun Yeup;Lee, Seung Ho;Cho, Hye Sun;Yuk, Soon Hong;Lee, Ki Yong
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.296-303
    • /
    • 2022
  • Background: Skin microbiota is important for maintenance of skin homeostasis; however, its disturbance may cause an increase in pathogenic microorganisms. Therefore, we aimed to develop a red ginseng formulation that can selectively promote beneficial bacteria. Methods: The effects of red ginseng formulation on microorganism growth were analyzed by comparing the growth rates of Staphylococcus aureus, S. epidermidis, and Cutibacterium acnes. Various preservatives mixed with red ginseng formulation were evaluated to determine the ideal composition for selective growth promotion of S. epidermidis. Red ginseng formulation with selected preservative was loaded into a biocompatible polymer mixture and applied to the faces of 20 female subjects in the clinical trial to observe changes in the skin microbiome. Results: Red ginseng formulation promoted the growth of S. aureus and S. epidermidis compared to fructooligosaccharide. When 1,2-hexanediol was applied with red ginseng formulation, only S. epidermidis showed selective growth. The analysis of the release rates of ginsenoside-Rg1 and -Re revealed that the exact content of Pluronic F-127 was around 11%. The application of hydrogel resulted in a decrease in C. acnes in all subjects. In subjects with low levels of S. epidermidis, the distribution of S. epidermidis was significantly increased with the application of hydrogel formulation and total microbial species of subjects decreased by 50% during the clinical trial. Conclusion: We confirmed that red ginseng formulation with 1,2-hexanediol can help maintain skin homeostasis through improvement of skin microbiome.

Cannabidiol Inhibits Lipogenesis by Regulating Akt/AMPK-SREBP-1 Pathway in Sebocytes (피지세포에서 Akt/AMPK-SREBP-1 경로를 통한 CBD의 피지 합성 억제 효능)

  • Yoon Gyung Kwon;Ji Young Yoon;Hanon Lee;Dong Hyo Kim;Jun Hyo Lee;Diane M Thiboutot;Dae Hun Suh;Byoung Jun Park
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.343-348
    • /
    • 2023
  • Acne is one of the most common skin diseases, mainly occurring in adolescence. The pathophysiology of acne involves not only hormonal, genetic and environmental factors, but also other factors including hyperseborrhea, inflammation, over-keratinization of follicular keratinocytes and overgrowth of Cutibacterium acnes (C. acnes). Cannabidiol (CBD) is known to relieve pain, stress and inflammation. Moreover, cannabis extracts containing CBD have been reported to be effective in treating acne. However, the therapeutic effect of CBD on acne remains unclear. Therefore, this study aimed to investigate the effect and mechanism of CBD on lipogenesis in SEB-1 sebocytes. We treated sebocytes with CBD and found that it not only inhibited lipid synthesis, but also inhibited cell proliferation by inducing apoptosis. We then demonstrated that sterol response element-binding protein-1 (SREBP-1) mediates the inhibitory effect of CBD on lipogenesis. Furthermore, Akt and adenosine monophosphate-activated protein kinase (AMPK), upstream regulators of SREBP-1, were regulated by CBD treatment. Taken together, our studies demonstrate that CBD inhibits adipogenesis by regulating the Akt/AMPK-SREBP-1 signaling pathway, providing potential for use as a therapeutic agent for acne. Further research is needed to confirm the effect of CBD on inflammation caused by hyperkeratosis, which will increase the possibility of using CBD for acne treatment.