• Title/Summary/Keyword: Customized implant

Search Result 97, Processing Time 0.022 seconds

Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants

  • Mohammed, Hnd Hadi;Lee, Jin-Han;Bae, Ji-Myung;Cho, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.62-69
    • /
    • 2016
  • PURPOSE. The purpose of this study was to evaluate the effects of abutment screw length and cyclic loading on the removal torque (RTV) in external hex (EH) and internal hex (IH) implants. MATERIALS AND METHODS. Forty screw-retained single crowns were connected to external and internal hex implants. The prepared titanium abutment screws were classified into 8 groups based on the number of threads (n = 5 per group): EH 12.5, 6.5, 3.5, 2.5 and IH 6.5, 5, 3.5, 2.5 threads. The abutment screws were tightened with 20 Ncm torque twice with 10-minute intervals. After 5 minutes, the initial RTVs of the abutment screws were measured with a digital torque gauge (MGT12). A customized jig was constructed to apply a load along the implant long axis at the central fossa of the maxillary first molar. The post-loading RTVs were measured after 16,000 cycles of mechanical loading with 50 N at a 1-Hz frequency. Statistical analysis included one-way analysis of variance and paired t-tests. RESULTS. The post-loading RTVs were significantly lower than the initial RTVs in the EH 2.5 thread and IH 2.5 thread groups (P<.05). The initial RTVs exhibited no significant differences among the 8 groups, whereas the post-loading RTVs of the EH 6.5 and EH 3.5 thread groups were higher than those of the IH 3.5 thread group (P<.05). CONCLUSION. Within the limitations of this study, the external hex implants with short screw lengths were more advantageous than internal hex implants with short screw lengths in torque maintenance after cyclic loading.

Full mouth rehabilitation with dental implant utilizing 3D digital image and CAD/CAM system: case report (3차원 디지털 영상과 CAD/CAM 시스템을 활용한 전악 임플란트 수복 증례)

  • Kang, Se-Ha;Jeong, Seung-Mi;Shin, Jae-Ok;Fang, Jeong-Whan;Kim, Dae-Hwan;Choi, Byung-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.2
    • /
    • pp.158-168
    • /
    • 2015
  • This article describes how to use digital system in a fully edentulous case that diagnosis to definitive prosthesis fabrication. While proceeding oral scan and CBCT taking, digital markers were attached on maxillary palate and lower existing denture. Using CBCT image and oral scan image, the bone contour and anatomical structures were analyzed and flapless surgical guide, customized abutment and prosthesis were made. After the osseointegration, the definitive prosthesis was fabricated using the oral scan image with scan body. It provides clinicians with a fast workflow and improves clinical efficiency.

Subtotal calvarial vault reconstruction utilizing a customized polyetheretherketone (PEEK) implant with chimeric microvascular soft tissue coverage in a patient with syndrome of the trephined: A case report

  • Wang, Jessica S.;Louw, Ryan P. Ter;DeFazio, Michael V.;McGrail, Kevin M.;Evans, Karen K.
    • Archives of Plastic Surgery
    • /
    • v.46 no.4
    • /
    • pp.365-370
    • /
    • 2019
  • The syndrome of the trephined is a neurologic phenomenon that manifests as sudden decline in cognition, behavior, and sensorimotor function due to loss of intracranial domain. This scenario typically occurs in the setting of large craniectomy defects, resulting from trauma, infection, and/or oncologic extirpation. Cranioplasty has been shown to reverse these symptoms by normalizing cerebral hemodynamics and metabolism. However, successful reconstruction may be difficult in patients with complex and/or hostile calvarial defects. We present the case of a 48-year-old male with a large cranial bone defect, who failed autologous cranioplasty secondary to infection, and developed rapid neurologic deterioration leading to a near-vegetative state. Following debridement and antibiotic therapy, delayed cranioplasty was accomplished using a polyetheretherketone (PEEK) implant with free chimeric latissimus dorsi/serratus anterior myocutaneous flap transfer for vascularized resurfacing. Significant improvements in cognition and motor skill were noted in the early postoperative period. At 6-month follow-up, the patient had regained the ability to speak, ambulate and self-feed-correlating with evidence of cerebral/ventricular re-expansion on computed tomography. Based on our findings, we advocate delayed alloplastic implantation with total vascularized soft tissue coverage as a viable alternative for reconstructing extensive, hostile calvarial defects in patients with the syndrome of the trephined.

Effect of repeated learning for two dental CAD software programs (두 종의 치과용 캐드 소프트웨어에 대한 반복학습의 효과)

  • Son, KeunBaDa;Lee, Wan-Sun;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.88-96
    • /
    • 2017
  • Purpose: The purpose of this study is to assess the relationship between the time spent designing custom abutments and repeated learning using dental implant computer aided design (CAD) software. Materials and Methods: The design of customized abutments was performed four stages using the 3DS CAD software and the EXO CAD software, and measured repeatedly three times by each stage. Learning effect by repetition was presented with the learning curve, and the significance of the reduction in the total time and the time at each stage spent on designing was evaluated using the Friedman test and the Wilcoxon signed rank test. The difference in the design time between groups was analyzed using the repeated measure two-way ANOVA. Statistical analysis was performed using the SPSS statistics software (P < 0.05). Results: Repeated learning of the customized abutment design displayed a significant difference according to the number of repetition and the stage (P < 0.001). The difference in the time spent designing was found to be significant (P < 0.001), and that between the CAD software programs was also significant (P = 0.006). Conclusion: Repeated learning of CAD software shortened the time spent designing. While less design time on average was spent with the 3DS CAD than with the EXO CAD, the EXO CAD showed better results in terms of learning rate according to learning effect.

Alveolar Bone Distraction Osteogenesis at Maxillary Anterior Region for Forward-Downward Movement (상악 전치부의 전하방 이동을 위한 치조골신장술)

  • Yang, Hoon-Joo;Lee, Su-Yeon;Hwang, Soon-Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.5
    • /
    • pp.459-466
    • /
    • 2010
  • Alveolar distraction osteogenesis (ADO) has been regarded as an acceptable treatment for the alveolar bone deficiency. For ADO at anterior maxillary area, the vector should be oriented to forward and down-ward direction to get an adequate occlusion with mandibular teeth and to increase bone length and width for implant placement. However, the conventional commercial distraction devices for ADO are designed to allow mainly downward movement of alveolar segment, even though a forward movement can be obtained a little by controlling of inclination of device. To make ADO with controllable bidirectional vector possible, we used customized devices using self-manufactured ABDUL (Alveolar Bone Distractor Using Lag screw principle) and commercial orthodontic palatal expansion device ($Hyrex^{(R)}$). In all cases (n = 4), ADO could be performed successfully and dental implants were able to placed with adequate occlusion. We report the procedures, advantages and disadvantages of these methods.

Contrast and geometric correction of non-standardized radiographs in digital subtraction radiography (디지털 공제술에서 비표준화 방사선사진의 대조도 및 기하학적 보정에 관한 연구)

  • Kim, Eun-Kyung
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.797-809
    • /
    • 1998
  • The purposes of this study were to develop the computer program for the contrast and geometric correction in digital subtration radiography with the IDL (Interactive Data Language) and compare the results with this program for the correction of the non-standardized radiographs to those of standardized radiographs and those with "Emago" software, the commercial program for the correction. The procedures were written for the contrast correction and subtraction with the geometric correction, using IDL. 32 pairs of periapical radiographs of premolar and molar portion of two dry human mandibles were taken at two different occasions with XCP film holder(nonstandardized films) and another 32 pairs with customized XCP film holder(standardized films). Subtraction of standardized film pairs was performed. Subtraction after the contrast and geometric correction of non-standardized films was performed using the newly developed program and Emago software. Standard deviations of grey levels of the subtracted images by the newly developed program were compared with those of the standardized group and Emago-corrected group. Standard deviations of grey levels of new program-corrected group were much smaller than those of the Emago-corrected group (p<0.001) and slightly larger than those of standardized group (p<0.05). However, the difference was very minute. This study indicates that the newly developed program written with IDL may substitute the mechanical standardization for digital subtraction radiography.

  • PDF

Implications of 3-Dimensional Printed Spinal Implants on the Outcomes in Spine Surgery

  • Fiani, Brian;Newhouse, Alexander;Cathel, Alessandra;Sarhadi, Kasra;Soula, Marisol
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.495-504
    • /
    • 2021
  • Three-dimensional printing (3DP) applications possess substantial versatility within surgical applications, such as complex reconstructive surgeries and for the use of surgical resection guides. The capability of constructing an implant from a series of radiographic images to provide personalized anatomical fit is what makes 3D printed implants most appealing to surgeons. Our objective is to describe the process of integration of 3DP implants into the operating room for spinal surgery, summarize the outcomes of using 3DP implants in spinal surgery, and discuss the limitations and safety concerns during pre-operative consideration. 3DP allows for customized, light weight, and geometrically complex functional implants in spinal surgery in cases of decompression, tumor, and fusion. However, there are limitations such as the cost of the technology which is prohibitive to many hospitals. The novelty of this approach implies that the quantity of longitudinal studies is limited and our understanding of how the human body responds long term to these implants is still unclear. Although it has given surgeons the ability to improve outcomes, surgical strategies, and patient recovery, there is a need for prospective studies to follow the safety and efficacy of the usage of 3D printed implants in spine surgery.

An Image-to-Image Translation GAN Model for Dental Prothesis Design (치아 보철물 디자인을 위한 이미지 대 이미지 변환 GAN 모델)

  • Tae-Min Kim;Jae-Gon Kim
    • Journal of Information Technology Services
    • /
    • v.22 no.5
    • /
    • pp.87-98
    • /
    • 2023
  • Traditionally, tooth restoration has been carried out by replicating teeth using plaster-based materials. However, recent technological advances have simplified the production process through the introduction of computer-aided design(CAD) systems. Nevertheless, dental restoration varies among individuals, and the skill level of dental technicians significantly influences the accuracy of the manufacturing process. To address this challenge, this paper proposes an approach to designing personalized tooth restorations using Generative Adversarial Network(GAN), a widely adopted technique in computer vision. The primary objective of this model is to create customized dental prosthesis for each patient by utilizing 3D data of the specific teeth to be treated and their corresponding opposite tooth. To achieve this, the 3D dental data is converted into a depth map format and used as input data for the GAN model. The proposed model leverages the network architecture of Pixel2Style2Pixel, which has demonstrated superior performance compared to existing models for image conversion and dental prosthesis generation. Furthermore, this approach holds promising potential for future advancements in dental and implant production.

Patient-specific implants in reverse shoulder arthroplasty

  • Emil R Haikal;Mohamad Y. Fares;Joseph A. Abboud
    • Clinics in Shoulder and Elbow
    • /
    • v.27 no.1
    • /
    • pp.108-116
    • /
    • 2024
  • Reverse total shoulder arthroplasty (RTSA) is widely popular among shoulder surgeons and patients, and its prevalence has increased dramatically in recent years. With this increased use, the indicated pathologies associated with RTSA are more likely to be encountered, and challenging patient presentations are more likely to be seen. One prominent challenging presentation is RTSA patients with severe glenoid bone loss. Several techniques with varying degrees of invasiveness, including excessive reaming, alternate centerline, bone grafting, and patient-specific implants (PSIs), have been developed to treat patients with this presentation. PSI treatment uses a three-dimensional reconstruction of a computed tomography scan to design a prosthetic implant or component customized to the patient's glenoid morphology, allowing compensation for any significant bone loss. The novelty of this technology implies a paucity of available literature, and although many studies show that PSIs have good potential for solving challenging shoulder problems, some studies have reported questionable and equivocal outcomes. Additional research is needed to explore the indications, outcomes, techniques, and cost-efficiency of this technology to help establish its role in current treatment guidelines and strategies.

Bone changes around the maxillary posterior teeth opposing the implants in mandible: a clinical study (하악 임플란트에 대합되는 상악 구치의 주변골 변화에 대한 임상연구)

  • Park, Chan-Jin;Huh, Yoon-Hyuk;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.301-309
    • /
    • 2015
  • Purpose: When the edentulous area is restored by implant prostheses, the opposing hypofunctioned teeth will receive physiologic mechanical stimuli. This study evaluated the bone changes around the maxillary teeth opposing an implant restoration installed in the mandibular posterior area. Materials and Methods: Radiographs of the opposing teeth were taken at prostheses delivery (baseline), 3 and 6 months later. A customized film holding device was fabricated to standardize the projection geometry for the serial radiographs of the opposing teeth. The gray values of the region of interest of each digital image were compared according to time. Repeated measured analysis of variance was performed at the 95% significance level. Results: The gray values of the alveolar bone around the antagonist teeth of implants increased with time. The changes in gray values of the middle area were greater than those of the crestal area. However, the gray values of the mesial and distal areas were not different. The changes in gray values were different according to the unloaded time. Conclusion: A change in bone tissue will occur if a proper physiologic load is again applied to the bone tissues around a hypofunctioned tooth.