Click-Through Rate (CTR) prediction is a key function that determines the ranking of candidate items in the recommendation system and recommends high-ranking items to reduce customer information overload and achieve profit maximization through sales promotion. The fields of natural language processing and image classification are achieving remarkable growth through the use of deep neural networks. Recently, a transformer model based on an attention mechanism, differentiated from the mainstream models in the fields of natural language processing and image classification, has been proposed to achieve state-of-the-art in this field. In this study, we present a method for improving the performance of a transformer model for CTR prediction. In order to analyze the effect of discrete and categorical CTR data characteristics different from natural language and image data on performance, experiments on embedding regularization and transformer normalization are performed. According to the experimental results, it was confirmed that the prediction performance of the transformer was significantly improved when the L2 generalization was applied in the embedding process for CTR data input processing and when batch normalization was applied instead of layer normalization, which is the default regularization method, to the transformer model.
Recently, the MyData market has been growing as the importance of data and issues related to personal information protection have drawn much attention together. MyData refers to the concept of guaranteeing an individual's right to personal information and providing and utilizing one's data according to individual consent. MyData service providers can combine and analyze customer information to provide personalized services. In the early days, the MyData business was activated mainly by private companies and the financial industry, but recently, public institutions are also actively taking advantage of MyData. Meanwhile, the importance of an individual's intention to provide MyData for the success of MyData businesses continues to increase, but research related to this is lacking. Moreover, existing studies have been mainly conducted on individual benefits of MyData; there are not enough studies in which both public benefit and perceived risk factors are considered at the same time. In this regard, this study intends to derive factors affecting the intention to provide MyData based on the privacy calculus model, examine their influencing mechanism, and further verify the moderating effects of individual capabilities and institutional type. This study can find academic significance in that it expanded and demonstrated the privacy calculus model in the context of MyData providing intention. In addition, the results of this study are expected to offer practical guidelines for developing and managing new services in MyData businesses.
According to the increasing mobile security users who have experienced authentication failure by forgetting passwords, user names, or a response to a knowledge-based question have preference for biological information such as hand geometry, fingerprints, voice in personal identification and authentication. Therefore biometric verification of personal identification and authentication for mobile security provides assurance to both the customer and the seller in the internet. Our study focuses on human hand biometric information recognition system for personal identification and personal Authentication, including its shape, palm features and the lengths and widths of the fingers taken from mobile phone photographs such as iPhone4 and galaxy s2. Our hand biometric information recognition system consists of six steps processing: image acquisition, preprocessing, removing noises, extracting standard hand feature extraction, individual feature pattern extraction, hand biometric information recognition for personal identification and authentication from input images. The validity of the proposed system from mobile phone image is demonstrated through 93.5% of the sucessful recognition rate for 250 experimental data of hand shape images and palm information images from 50 subjects.
This research aimed to investigate the effect of business management of Korean restaurants on business performance and to propose an alternative. For this investigation, a survey was carried out targeting Korean restaurant managers in the capital area, and with 360 copies as sample, factor analysis, difference test, and multiple regression analysis were conducted. As a result of analysis, among the factors of business management of Korean restaurants, only information management and fund management appeared to have effects on both financial performance and nonfinancial performance. This means, in case of Korean restaurants, business performance can be improved by understanding every environment about food service management and customer demands, by investing fund in the right place, and by managing inefficient expenses. Therefore, it is most important for a Korean restaurant manager to cultivate knowledge in management and to put effort into cost-reduction of all employees.
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.4
/
pp.1923-1931
/
2014
A value creation is understood as important business strategy these days in both academics and industry. But this phenomenon is not fully understood based on systematized framework. In this paper, we summarized value research trend based on exploratory research and inductive reasoning by exploring both international and domestic journals. And we built a research framework that can analyze value creation between supplier and customer. Value research prior to 2004 is primarily divided into values of goods or services and relationship values. After 2004, service-dominant (SD) logic has been outlined. There are other research trends to see the relationship value in terms of relationship benefits and relationship in the network or supply chain. 4 critical resource types (financial resource, knowledge resource, efficiency resource, and intellectual resource) and 5 competence types (relational capability, collaboration capability, innovation capability, managing capability) are constructed as principal factors for value creation from inductive reasoning based upon a resource-based view (RBV) and a competence-based view (CBV). The research framework was built based on 4 resources and 4 competences.
This study promotes education, purchase, and advertisement activities related to eco-friendly apparel products. The study examined college students and their demographic characteristics, their recognition of and interest in, knowledge, purchase, and attitude towards advertisements related to eco-friendly apparel products. In this study, 337 students from various universities in Daejeon participated in a questionnaire survey from March 7 to March 25, 2011. The collected materials were analyzed by frequency analysis, factor analysis, cluster analysis, cross tabulations analysis, and t-test using SPSS 18.0 software. The results of these tests revealed that more students from the upper grades belonged to the Environmentally Friendly Group compared to those in the Non-environmentally Friendly Group. It was also found that students in the Environmentally Friendly Group had a higher level of consciousness and expressed a greater interest in eco-friendly apparel products as well as towards the launch of educational programs. Additionally, this group was more supportive of the need for new courses and had a higher likelihood to enroll in these courses. The research results revealed that (compared to the Non-environmentally Friendly Group) the Environmentally Friendly Group exhibited a greater satisfaction with the designs of eco-friendly apparel products and had more experience to examine advertisements about eco-friendly apparel products; in addition, they expressed a higher likability and reliability to these advertisements. The results also showed that the Environmentally Friendly Group believed that advertisements had persuasive power and were quite impressive in recalling the advertisements.
The major reason that spatial data warehousing has attracted a great deal of attention in business GIS in recent years is due to the wide availability of huge amount of spatial data and the imminent need for fuming such data into useful geographic information. Therefore, this research has been focused on designing and implementing the pilot tested system for spatial decision making. The purpose of the system is to predict targeted marketing area by discriminating the customers by using both transaction quantity and the number of customer using credit card in department store. Moreover, the pilot tested system of this research provides OLAP tools for interactive analysis of multidimensional data of geographically various granularities, which facilitate effective spatial data mining. focused on the analysis methodology, the case study is aiming to use GIS and clustering for knowledge discovery. Especially, the importance of this study is in the use of snowflake schema model capabilities for GIS framework.
Recently, as the COVID-19 has spread and prolonged worldwide, the 'Untact' society is becoming routinized, and various smart technologies are leading to the spread of the 'Ontact' culture. This is because the desire of consumers to purchase a product and use the service has increased while minimizing the direct contact. In order to quickly respond to this circumstance, the percentage of the companies which are adopting Chatbot in various fields such as orders, delivery, and inquiries is increasing and they are getting a positive result. However as the demand for building Chatbot increases dramatically, there are many confusions among the companies which want to introduce Chatbot to their system, due to the lack of professional technicians and difficulties in understanding AI technologies and how to build them effectively. I believe that in the post COVID-19 era, much more companies will adopt Chatbot, and this will intensify the problem. The purpose of this study was to derive the needs for a guide on the method of buiilding a Chatbot through considering the prior research on Chatbot and analysis of the recent surge in the use of Chatbot services related to COVID-19. There are implications to presenting 5 phases of universal Chatbot implementation methodology using the platform to the stakeholders who want to introduce Chatbot to their customer so that they can understand and build Chatbot more easily and use AI Chatbot actively in response to the POST COVID-19 era.
Purpose - The ICT(information and communications technologies) development is affecting consumer behaviors on selecting channel or distribution system. This study aims to advance our knowledge about the factors influencing omni-channel behaviors. This study considers the positive brand experience as the moderating variable into the relationship between omini-channel use intention and consumer brand relation. Also, the effect of positive brand experience on consumer-brand relation is researched. Research design, data, and methodology - This study conducted an empirical test with the subject as customers who purchase goods or service through on-off cross channel simultaneously. The research model is developed from prior literatures about influencing variables on channel selection. The structure of this study is designed to identify causal relationships between the variables. 268 survey data from the questionnaire survey which is conducted to target customers who use online and offline channels, is used for empirical analysis. This study validates generality with descriptive statistics and data reliability with Cronbach's alpha value. The exploratory factor analysis is used for value purification. Then, the confirmatory factor analysis is conducted for structural equation modeling. Finally, the execute structural equation modeling is analyzed to confirm the hypotheses Results - First, the two causal influences between perceived performance risk and the propensity of omni-channel and between price consciousness and the propensity of omni-channel are verified through the empirical test. Second, the result identifies that the propensity of omni-channel is influenced on consumer-brand relationship. Third, the AMOS analysis proves that the moderating variable, positive brand experience, has significant positive impact on consumer-brand relationship. This significant relationship is highly supported by the regression analysis between brand experience and propensity of omni-channel because it results that positive brand experience has positive impact on the propensity of omni-channel. All hypotheses are verified to be true. Conclusions - Based on the empirical result, this study confirms that perceived performance risk and price consciousness are the important factors influencing propensity of omni-channel. According to the additional analysis, the moderating variable and positive brand experience plays important role between the propensity of omni-channel and consumer-brand relationship. Furthermore, positive brand experience influences more on consumer-brand relationship than non-positive brand experience.
Cloud services are used for improving business. Moreover, customer relationship management(CRM) approaches use social networking as tools to enhance services to customers. However, most cloud systems do not support the semantic structures, and because of this, vital information from social network sites is still hard to process and use for business strategy. This paper proposes a collaboration framework based on social semantic web for cloud system. The proposed framework consists of components to support social semantic web to provide an efficient collaboration system for cloud consumers and service providers. The knowledge acquisition module extracts rules from data gathered by social agents and these rules are used for collaboration and business strategy. This paper showed the implementations of processing of social network site data in the proposed semantic model and pattern extraction which was used for the virtual grouping of cloud service providers for efficient collaboration.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.