• Title/Summary/Keyword: Customer Relationship Management System

Search Result 336, Processing Time 0.024 seconds

EEPERF(Experiential Education PERFormance): An Instrument for Measuring Service Quality in Experiential Education (체험형 교육 서비스 품질 측정 항목에 관한 연구: 창의적 체험활동을 중심으로)

  • Park, Ky-Yoon;Kim, Hyun-Sik
    • Journal of Distribution Science
    • /
    • v.10 no.2
    • /
    • pp.43-52
    • /
    • 2012
  • As experiential education services are growing, the need for proper management is increasing. Considering that adequate measures are an essential factor for achieving success in managing something, it is important for managers to use a proper system of metrics to measure the performance of experiential education services. However, in spite of this need, little research has been done to develop a valid and reliable set of metrics for assessing the quality of experiential education services. The current study aims to develop a multi-item instrument for assessing the service quality of experiential education. The specific procedure is as follows. First, we generated a pool of possible metrics based on diverse literature on service quality. We elicited possiblemetric items not only from general service quality metrics such as SERVQUAL and SERVPERF but also from educational service quality metrics such as HEdPERF and PESPERF. Second, specialist teachers in the experiential education area screened the initial metrics to boost face validity. Third, we proceeded with multiple rounds of empirical validation of those metrics. Based on this processes, we refined the metrics to determine the final metrics to be used. Fourth, we examined predictive validity by checking the well-established positive relationship between each dimension of metrics and customer satisfaction. In sum, starting with the initial pool of scale items elicited from the previous literature and purifying them empirically through the surveying method, we developed a four-dimensional systemized scale to measure the superiority of experiential education and named it "Experiential Education PERFormance" (EEPERF). Our findings indicate that students (consumers) perceive the superiority of the experiential education (EE) service in the following four dimensions: EE-empathy, EE-reliability, EE-outcome, and EE-landscape. EE-empathy is a judgment in response to the question, "How empathetically does the experiential educational service provider interact with me?" Principal measures are "How well does the service provider understand my needs?," and "How well does the service provider listen to my voice?" Next, EE-reliability is a judgment in response to the question, "How reliably does the experiential educational service provider interact with me?" Major measures are "How reliable is the schedule here?," and "How credible is the service provider?" EE-outcome is a judgmentin response to the question, "What results could I get from this experiential educational service encounter?" Representative measures are "How good is the information that I will acquire form this service encounter?," and "How useful is this service encounter in helping me develop creativity?" Finally, EE-landscape is a judgment about the physical environment. Essential measures are "How convenient is the access to the service encounter?,"and "How well managed are the facilities?" We showed the reliability and validity of the system of metrics. All four dimensions influence customer satisfaction significantly. Practitioners may use the results in planning experiential educational service programs and evaluating each service encounter. The current study isexpected to act as a stepping-stone for future scale improvement. In this case, researchers may use the experience quality paradigm that has recently arisen.

  • PDF

A Study on Trust Transfer in Traditional Fintech of Smart Banking (핀테크 서비스에서 오프라인에서 온라인으로의 신뢰전이에 관한 연구 - 스마트뱅킹을 중심으로 -)

  • Ai, Di;Kwon, Sun-Dong;Lee, Su-Chul;Ko, Mi-Hyun;Lee, Bo-Hyung
    • Management & Information Systems Review
    • /
    • v.36 no.3
    • /
    • pp.167-184
    • /
    • 2017
  • In this study, we investigated the effect of offline banking trust on smart banking trust. As influencing factors of smart banking trust, this study compared offline banking trust, smart banking's system quality, and information quality. For the empirical study, 186 questionnaire data were collected from smart banking users and the data were analyzed using Smart-PLS 2.0. As results, it was verified that there is trust transfer in FinTech service, by the significant effect of offline banking trust on smart banking trust. And it was proved that the effect of offline banking trust on smart banking trust is lower than that of smart banking itself. The contribution of this study can be seen in both academic and industrial aspects. First, it is the contribution of the academic aspect. Previous studies on banking were focused on either offline banking or smart banking. But this study, focus on the relationship between offline banking and online banking, proved that offline banking trust affects smart banking trust. Next, it is the industrial contribution. This study showed that offline banking characteristics of traditional commercial banks affect the trust of emerging smart banking service. This means that the emerging FinTech companies are not advantageous in the competition of trust building compared to traditional commercial banks. Unlike traditional commercial banks, the emerging FinTech is innovating the convenience of customers by arming them with new technologies such as mobile Internet, social network, cloud technology, and big data. However, these FinTech strengths alone can not guarantee sufficient trust needed for financial transactions, because banking customers do not change a habit or an inertia that they already have during using traditional banks. Therefore, emerging FinTech companies should strive to create destructive value that reflects the connection with various Internet services and the strength of online interaction such as social services, which have an advantage over customer contacts. And emerging FinTech companies should strive to build service trust, focused on young people with low resistance to new services.

  • PDF

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

A Study on the Impact of SNS Usage Characteristics, Characteristics of Loan Products, and Personal Characteristics on Credit Loan Repayment (SNS 사용특성, 대출특성, 개인특성이 신용대출 상환에 미치는 영향에 관한 연구)

  • Jeong, Wonhoon;Lee, Jaesoon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.5
    • /
    • pp.77-90
    • /
    • 2023
  • This study aims to investigate the potential of alternative credit assessment through Social Networking Sites (SNS) as a complementary tool to conventional loan review processes. It seeks to discern the impact of SNS usage characteristics and loan product attributes on credit loan repayment. To achieve this objective, we conducted a binomial logistic regression analysis examining the influence of SNS usage patterns, loan characteristics, and personal attributes on credit loan conditions, utilizing data from Company A's credit loan program, which integrates SNS data into its actual loan review processes. Our findings reveal several noteworthy insights. Firstly, with respect to profile photos that reflect users' personalities and individual characteristics, individuals who choose to upload photos directly connected to their personal lives, such as images of themselves, their private circles (e.g., family and friends), and photos depicting social activities like hobbies, which tend to be favored by individuals with extroverted tendencies, as well as character and humor-themed photos, which are typically favored by individuals with conscientious traits, demonstrate a higher propensity for diligently repaying credit loans. Conversely, the utilization of photos like landscapes or images concealing one's identity did not exhibit a statistically significant causal relationship with loan repayment. Furthermore, a positive correlation was observed between the extent of SNS usage and the likelihood of loan repayment. However, the level of SNS interaction did not exert a significant effect on the probability of loan repayment. This observation may be attributed to the passive nature of the interaction variable, which primarily involves expressing sympathy for other users' comments rather than generating original content. The study also unveiled the statistical significance of loan duration and the number of loans, representing key characteristics of loan portfolios, in influencing credit loan repayment. This underscores the importance of considering loan duration and the quantity of loans as crucial determinants in the design of microcredit products. Among the personal characteristic variables examined, only gender emerged as a significant factor. This implies that the loan program scrutinized in this analysis does not exhibit substantial discrimination based on age and credit scores, as its customer base predominantly consists of individuals in their twenties and thirties with low credit scores, who encounter challenges in securing loans from traditional financial institutions. This research stands out from prior studies by empirically exploring the relationship between SNS usage and credit loan repayment while incorporating variables not typically addressed in existing credit rating research, such as profile pictures. It underscores the significance of harnessing subjective, unstructured information from SNS for loan screening, offering the potential to mitigate the financial disadvantages faced by borrowers with low credit scores or those ensnared in short-term liquidity constraints due to limited credit history a group often referred to as "thin filers." By utilizing such information, these individuals can potentially reduce their credit costs, whereas they are supposed to accrue a more substantial financial history through credit transactions under conventional credit assessment system.

  • PDF

The Effect of Information Protection Control Activities on Organizational Effectiveness : Mediating Effects of Information Application (정보보호 통제활동이 조직유효성에 미치는 영향 : 정보활용의 조절효과를 중심으로)

  • Jeong, Gu-Heon;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.71-90
    • /
    • 2011
  • This study was designed to empirically analyze the effect of control activities(physical, managerial and technical securities) of information protection on organizational effectiveness and the mediating effects of information application. The result was summarized as follows. First, the effect of control activities(physical, technical and managerial securities) of information protection on organizational effectiveness showed that the physical, technical and managerial security factors have a significant positive effect on the organizational effectiveness(p < .01). Second, the effect of control activities(physical, technical and managerial securities) of information protection on information application showed that the technical and managerial security factors have a significant positive effect on the information application(p < .01). Third, the explanatory power of models, which additionally put the information protection control activities(physical, technical and managerial securities) and the interaction variables of information application to verify how the information protection control activities( physical, technical and managerial security controls) affecting the organizational effectiveness are mediated by the information application, was 50.6%~4.1% additional increase. And the interaction factor(${\beta}$ = .148, p < .01) of physical security and information application, and interaction factor(${\beta}$ = .196, p < .01) of physical security and information application among additionally-put interaction variables, were statistically significant(p < .01), indicating the information application has mediated the relationship between physical security and managerial security factors of control activities, and organizational effectiveness. As for results stated above, it was proven that physical, technical and managerial factors as internal control activities for information protection are main mechanisms affecting the organizational effectiveness very significantly by information application. In information protection control activities, the more all physical, technical and managerial security factors were efficiently well performed, the higher information application, and the more information application was efficiently controlled and mediated, which it was proven that all these three factors are variables for useful information application. It suggested that they have acted as promotion mechanisms showing a very significant result on the internal customer satisfaction of employees, the efficiency of information management and the reduction of risk in the organizational effectiveness for information protection by the mediating or difficulty of proved information application.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.