• Title/Summary/Keyword: Customer Demand

Search Result 667, Processing Time 0.029 seconds

Buyer's Price and Inventory Policy with Price Dependent Demand for Decaying Items Day terms Supplier Credit in a Two-stage Supply Chain

  • Shinn, Seong-Whan
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.151-162
    • /
    • 2018
  • In deriving the economic order quantity (EOQ) formula, it is tacitly assumed that the buyer has to pay product price while receiving the product from the supplier. However, as a marketing policy, some suppliers permit a delay in payments to the buyers to increase demand for the product they made. Credit transactions would have a positive effect on both suppliers and buyers. For a supplier who offers trade credit, it is an effective means of price differentiation to increase the demand for the product. Availability of opportunity to delay the payment in buyer effectively reduces the cost of holding stocks and therefore, the buyer has a lot of price options to choose his sales price for a customer. Since the buyer's order is affected by the customer's demand, the problems of determining the sales price and EOQ are interdependent and must be solved simultaneously. From this perspective, this paper evaluates the problem of determining the optimal sales price and EOQ for the buyer at the same time when the supplier allows a delay in payments for the product whose demand is represented as a function that decreases linearly with the sales price. For the analysis, it is also assumed that inventory is exhausted not only by customer's but also by decay.

Adaptive Inventory Control Models in a Supply Chain with Nonstationary Customer Demand (비안정적인 고객수요를 갖는 공급사슬에서의 적응형 재고관리 모델)

  • Baek, Jun-Geol;Kim, Chang Ouk;Jun, Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.2
    • /
    • pp.106-119
    • /
    • 2005
  • Uncertainties inherent in customer demand patterns make it difficult for supply chains to achieve just-in-time inventory replenishment, resulting in loosing sales opportunity or keeping excessive chain wide inventories. In this paper, we propose two intelligent adaptive inventory control models for a supply chain consisting of one supplier and multiple retailers, with the assumption of information sharing. The inventory control parameters of the supplier and retailers are order placement time to an outside source and reorder points in terms of inventory position, respectively. Unlike most extant inventory control approaches, modeling the uncertainty of customer demand as a stationary statistical distribution is not necessary in these models. Instead, using a reinforcement learning technique, the control parameters are designed to adaptively change as customer demand patterns change. A simulation based experiment was performed to compare the performance of the inventory control models.

A Study on the Prediction Analysis of Aviation Passenger Demand after Covid-19

  • Jin, Seong Hyun;Jeon, Seung Joon;Kim, Kyoung Eun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.147-153
    • /
    • 2020
  • This study analyzed the outlook for aviation demand for the recovery of the aviation industry, focusing on airlines facing difficulties in management due to the Covid-19 crisis. Although the timing of the recovery in aviation demand is uncertain at the moment, this study is based on prior research related to Covid-19 and forecasts by aviation specialists, and analyzed by SWOT technique to a group of aviation experts to derive and suggest implications for the prospects of aviation demand. Looking at the implications based on the analysis results, first, customer trust to prevent infection should be considered a top priority for recovering aviation demand. Second, promote reasonable air price policy. Finally, it seeks to try various research and analysis techniques to predict long-term aviation demand to overcome Covid-19.

The Impact of Nonconforming Items on (s, S) Inventory Model with Customer Order Reservation and Cancellation

  • Takemoto, Yasuhiko;Arizono, Ikuo
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.2
    • /
    • pp.72-79
    • /
    • 2009
  • The ultimate goal of inventory management is to decide the timing and the quantity of ordering in response to uncertain demands. Recently, some researchers have focused upon an impact of distortions in the information, e.g., customer order cancellation, on an economical inventory policy. The customer order cancellation is considered a kind of distortions in demands, because a demand that is eventually cancelled is equivalent to a phony demand. Also, there are some additional distortions in the inventory information. For instance, the procurement of suppliers may include some nonconforming items as a result of imperfect production and inspection by the suppliers, and/or damage in transit. The nonconforming item should be considered a kind of distortions in the inventory information, because the nonconforming item is equivalent to a phony stock. In this article, we consider an inventory model under the situation that customers can cancel their orders and the procurement of suppliers may include some nonconforming items. Then, we introduce the customer order reservation into the inventory model for the purpose of avoiding the costly backlogs, because the customer order reservation gives retailers a period to fulfill customer's requests. We formulate a periodic review (s, S) inventory model and investigate the economical operation under the situation mentioned above. Further, through the sensitivity analysis, we show the impact of these distortions and the effect of the customer order reservation on the inventory policy.

The Development of Logistics Service Evaluation Model Considering Potential Customer Demand Improvement Index (잠재적고객요구개선지수와 기대손실을 고려한 물류서비스 평가모형 개발)

  • Chang, Yong-Hyuk;Cho, Yu-Jin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • Logistics companies are worrying about securing of differential competitiveness so as to be competitive companies in keen logistics market. The ground is how users are satisfied by sell-established service system to respond not only economic feasibility of logistics costs but also diversity and advancement of logistics needs. The competitiveness of logistics companies is also caused by customer satisfaction of service and only companies finding and satisfying customer needs continuously may be more competitive. For the competitiveness, it's the most important to analyze demands of current and potential customers and their pursuing value properly. Therefore, this researcher grasped PSL for online logistics service users with 5-point Likert-scale and quality-level decision method that consider the weighted value based on Kano model, measured customer's potential Demand for service through PCDI, and suggested methodology for deciding the priority of the improvement with loss function of Taguchi.

Optimal Multi-Product Inventory Problem Algorithm with Target In-Stock Ratio Constraints (목표 재고보유매장비율 달성을 위한 다중품목 재고수준 최적화 알고리즘)

  • Hyoungtae Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.109-115
    • /
    • 2023
  • This paper studied the problem of determining the optimal inventory level to meet the customer service target level in a situation where the customer demand for each branch of a nationwide retailer is uncertain. To this end, ISR (In-Stock Ratio) was defined as a key management indicator (KPI) that can be used from the perspective of a nationwide retailer such as Samsung, LG, or Apple that sells goods at branches nationwide. An optimization model was established to allow the retailer to minimize the total amount of inventory held at each branch while meeting the customer service target level defined as the average ISR. This paper proves that there is always an optimal solution in the model and expresses the optimal solution in a generalized form using the Karush-Kuhn-Tucker condition regardless of the shape of the probability distribution of customer demand. In addition, this paper studied the case where customer demand follows a specific probability distribution such as a normal distribution, and an expression representing the optimal inventory level for this case was derived.

A Study on Designing a Market Driven Demand Response System (시장 기반의 수요관리 기법 Demand Response System 설계 방안 연구)

  • Yu, In-H.;Lee, Jin-K.;Kim, Sun-I.;Ko, Jong-M.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.384-386
    • /
    • 2002
  • As restructuring in power industry has introduced competitive markets, a new method on demand side management has been developed. Many programs using the method were developed with providing several choices for customer. Nowadays the programs are called demand response as the load management is done by customer's responding to the market price signal. It was proven that the method was effective for demand control with the active consumer's attending for the program. This paper analyses the perspective and the requirement for designing the demand response system.

  • PDF

Demand Response of Large-Scale General and Industrial Customer using In-House Pricing Model (사내요금제를 활용한 대규모 수용가 수요반응에 관한 연구)

  • Kim, Min-Jeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1128-1134
    • /
    • 2016
  • Demand response provides customer load reductions based on high market prices or system reliability conditions. One type of demand response, price-based program, induces customers to respond to changes in product rates. However, there are large-scale general and industrial customers that have difficulty changing their energy consumption patterns, even with rate changes, due to their electricity demands being commercial and industrial. This study proposes an in-house pricing model for large-scale general and industrial customers, particularly those with multiple business facilities, for self-regulating demand-side management and cost reduction. The in-house pricing model charges higher rates to customers with lower load factors by employing peak to off-peak ratios in order to reduce maximum demand at each facility. The proposed scheme has been applied to real world and its benefits are demonstrated through an example.

An Adaptive Vendor Managed Inventory Model Using Action-Reward Learning Method (행동-보상 학습 기법을 이용한 적응형 VMI 모형)

  • Kim Chang-Ouk;Baek Jun-Geol;Choi Jin-Sung;Kwon Ick-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.27-40
    • /
    • 2006
  • Today's customer demands in supply chains tend to change quickly, variously even in a short time Interval. The uncertainties of customer demands make it difficult for supply chains to achieve efficient inventory replenishment, resulting in loosing sales opportunity or keeping excessive chain wide inventories. Un this paper, we propose an adaptive vendor managed inventory (VMI) model for a two-echelon supply chain with non-stationary customer demands using the action-reward learning method. The Purpose of this model is to decrease the inventory cost adaptively. The control Parameter, a compensation factor, is designed to adaptively change as customer demand pattern changes. A simulation-based experiment was performed to compare the performance of the adaptive VMI model.

Distributor's Lot-sizing and Pricing Policy with Ordering Cost inclusive of a Freight Cost under Trade Credit in a Two-stage Supply Chain

  • Shinn, Seong-Whan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.62-70
    • /
    • 2020
  • As an effective means of price discrimination, some suppliers offer trade credit to the distributors in order to stimulate the demand for the product they produce. The availability of the delay in payments from the supplier enables discount of the distributor's selling price from a wider range of the price option in anticipation of increased customer's demand. Since the distributor's lot-size is affected by the demand for the customer, the distributor's lot-size and the selling price determination problem is interdependent and must be solved at the same time. Also, in many common business transactions, the distributor pays the shipping cost for the order and hence, the distributor's ordering cost consists of a fixed ordering cost and the shipping cost that depend on the order quantity. In this regard, we deal with the joint lot-size and price determination problem when the supplier allows delay in payments for an order of a product. The positive effects of credit transactions can be integrated into the EOQ (economic order quantity) model through the consideration of retailing situations, where the customer's demand is a function of the distributor's selling price. It is also assumed that the distributor's order cost consists of a fixed ordering cost and the variable shipping cost. We formulate the distributor's mathematical model from which the solution algorithm is derived based on properties of an optimal solution. A numerical example is presented to illustrate the algorithm developed.