• Title/Summary/Keyword: Curves

Search Result 8,468, Processing Time 0.033 seconds

Quaternionic Direction Curves

  • Sahiner, Burak
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.377-388
    • /
    • 2018
  • In this paper, we define new quaternionic associated curves called quaternionic principal-direction curves and quaternionic principal-donor curves. We give some properties and relationships between Frenet vectors and curvatures of these curves. For spatial quaternionic curves, we give characterizations for quaternionic helices and quaternionic slant helices by means of their associated curves.

ON ADJOINT CURVES OF FRAMED CURVES AND SOME RULED SURFACES

  • Bahar Dogan Yazici;Siddika Ozkaldi Karakus;Murat Tosun
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.380-396
    • /
    • 2023
  • In this study, we introduce the adjoint curves of framed curves. We examine some characterizations of adjoint curve of a framed curve. In addition, we give the conditions for framed curves and adjoint curves to be Bertrand and Mannheim curves. Then, we introduce adjoint curves of Frenet-type framed curves and give ruled surfaces related to adjoint curves. Finally, we create normal and binormal surfaces of the framed adjoint curves and obtain some characterizations of these surfaces and we support by the results with figures.

HIGHER DIMENSIONAL MINKOWSKI PYTHAGOREAN HODOGRAPH CURVES

  • Kim, Gwang-Il;Lee, Sun-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.405-413
    • /
    • 2004
  • Rational parameterization of curves and surfaces is one of the main topics in computer-aided geometric design because of their computational advantages. Pythagorean hodograph (PH) curves and Minkowski Pythagorean hodograph (MPH) curves have attracted many researcher's interest because they provide for rational representation of their offset curves in Euclidean space and Minkowski space, respectively. In [10], Kim presented the characterization of the PH curves in the Euclidean space and analyzed the relation between the class of PH curves and the class of rational curves. In this paper, we extend the characterization of PH curves in [10] into that of MPH curves in the general Minkowski space and consider some generalized MPH curves satisfying this characterization.

ASSOCIATED CURVES OF CHARGED PARTICLE MOVING WITH THE EFFECT OF MAGNETIC FIELD

  • Muhammed Talat Sariaydin;Aziz Yazla
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.589-598
    • /
    • 2023
  • Magnetic curves are the trajectories of charged particals which are influenced by magnetic fields and they satisfy the Lorentz equation. It is important to find relationships between magnetic curves and other special curves. This paper is a study of magnetic curves and this kind of relationships. We give the relationship between β-magnetic curves and Mannheim, Bertrand, involute-evolute curves and we give some geometric properties about them. Then, we study this subject for γ-magnetic curves. Finally, we give an evaluation of what we did.

A Brief History of Study on the Bound for Derivative of Rational Curves in CAGD (CAGD에서 유리 곡선의 미분과 그 상한에 관한 연구의 흐름)

  • Park, Yunbeom
    • Journal for History of Mathematics
    • /
    • v.27 no.5
    • /
    • pp.329-345
    • /
    • 2014
  • CAGD(Computer Aided Geometric Design) is a branch of applied mathematics concerned with algorithms for the design of smooth curves and surfaces and for their efficient mathematical representation. The representation is used for the computation of the curves and surfaces, as well as geometrical quantities of importance such as curvatures, intersection curves between two surfaces and offset surfaces. The $B\acute{e}zier$ curves, B-spline, rational $B\acute{e}zier$ curves and NURBS(Non-Uniform Rational B-Spline) are basically and widely used in CAGD. The definitions and properties of these curves are presented in this paper. And a brief history of study on the bound for derivative of rational curves in CAGD is also presented.

A NON-NEWTONIAN APPROACH IN DIFFERENTIAL GEOMETRY OF CURVES: MULTIPLICATIVE RECTIFYING CURVES

  • Muhittin Evren Aydin;Aykut Has;Beyhan Yilmaz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.849-866
    • /
    • 2024
  • In this paper, we study the rectifying curves in multiplicative Euclidean space of dimension 3, i.e., those curves for which the position vector always lies in its rectifying plane. Since the definition of rectifying curve is affine and not metric, we are directly able to perform multiplicative differential-geometric concepts to investigate such curves. By several characterizations, we completely classify the multiplicative rectifying curves by means of the multiplicative spherical curves.

CHARACTERIZATION OF MINKOWSKI PYTHAGOREAN-HODOGRAPH CURVES

  • Lee, Sun-Hong;Kim, Gwang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.521-528
    • /
    • 2007
  • We present a new proof of the characterization theorem for Minkowski Pythagorean-hodograph curves in the Minkowski spaces $\mathbf{R}^{n+1,m}$. For an polynomial curves $\mathbf{s}(t)=(x_1(t),...,\;x_{n+m}(t))$, we also find Minkowski Pythagorean-hodograph curves $\mathbf{r}(t)=(x_0(t),\;x_1(t),...,\;x_{n+m}(t))$. In case m=0, Minkowski Pythagorean-hodograph curves become Pythagorean-hodograph curves in the Euclidean spaces $\mathbf{R}^{n+1}$ and Theorems in this paper hold for these Pythagorean-hodograph curves.

Isoparametric Curve of Quadratic F-Bézier Curve

  • Park, Hae Yeon;Ahn, Young Joon
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • In this thesis, we consider isoparametric curves of quadratic F-B$\acute{e}$zier curves. F-B$\acute{e}$zier curves unify C-B$\acute{e}$zier curves whose basis is {sint, cos t, t, 1} and H-B$\acute{e}$zier curves whose basis is {sinht, cosh t, t,1}. Thus F-B$\acute{e}$zier curves are more useful in Geometric Modeling or CAGD(Computer Aided Geometric Design). We derive the relation between the quadratic F-B$\acute{e}$zier curves and the quadratic rational B$\acute{e}$zier curves. We also obtain the geometric properties of isoparametric curve of the quadratic F-B$\acute{e}$zier curves at both end points and prove the continuity of the isoparametric curve.

SMARANDACHE CURVES OF SOME SPECIAL CURVES IN THE GALILEAN 3-SPACE

  • ABDEL-AZIZ, H.S.;KHALIFA SAAD, M.
    • Honam Mathematical Journal
    • /
    • v.37 no.2
    • /
    • pp.253-264
    • /
    • 2015
  • In the present paper, we consider a position vector of an arbitrary curve in the three-dimensional Galilean space $G_3$. Furthermore, we give some conditions on the curvatures of this arbitrary curve to study special curves and their Smarandache curves. Finally, in the light of this study, some related examples of these curves are provided and plotted.

CURVES ON THE UNIT 3-SPHERE S3(1) IN EUCLIDEAN 4-SPACE ℝ4

  • Kim, Chan Yong;Park, Jeonghyeong;Yorozu, Sinsuke
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1599-1622
    • /
    • 2013
  • We show many examples of curves on the unit 2-sphere $S^2(1)$ in $\mathbb{R}^3$ and the unit 3-sphere $S^3(1)$ in $\mathbb{R}^4$. We study whether its curves are Bertrand curves or spherical Bertrand curves and provide some examples illustrating the resultant curves.