• Title/Summary/Keyword: Curved root canals

Search Result 57, Processing Time 0.032 seconds

THE EFFECT OF SOME CANAL PREPARATION TECHNIQUES ON THE SHAPE OF ROOT CANALS (수종의 근관형성 방법이 근관 형태에 미치는 영향)

  • Lee, Ji-Hyeon;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.337-345
    • /
    • 1999
  • The purpose of this study was to compare the shape of root canal after instrumentation with some engine driven NiTi files. Thirty narrow and curved canals(15-35 degree) of mesial canals of extracted human mandibular first molars were divided into three groups. Group 1: After radicular access with Gates Glidden drill, apical shaping using step back method with Flexo file Group 2: After radicular access with Gates Glidden drill, apical shaping with Profile .04 Group 3: Canal shaping with GT file and Profile .04. Using modified Bramante technique, the root was sectioned at 2 mm from apical foramen, height of curvature, 2 mm from canal orifice. Canal centering ratio, amount of transport, amount of dentin removed, shape of canal were measured and statistical analysis is done using SPSS Program V 7.5. The results were as follows: 1. Canal centering ratio of group 3 was the lowest at coronal part, but there was no statistical difference. Centering ratio of group 2 was the lowest at curve part, and there was statistical difference between group 1(P<0.05). Centering ratio of group 2 was the lowest at apical part, but there was no statistic difference. 2. Amount of transport of group 3 was the lowest at coronal part, but there was no statistical difference. Amount of transport of group 2 was the lowest at curve part, and there was statistical difference between group 1(P<0.05). Amount of transport of group 3 was the lowest at apical part, and there was statistical difference between group 1 and group 2, group 1 and group 3(P<0.05). 3. Amount of dentin removed of group 3 was the lowest at coronal part, bur there was no statistical difference. Amount of dentin removed of group 2 was the lowest at curve part, but there was no statistical difference. Amount of dentin removed or group 2 was the lowest at apical part, and there was statistical difference between group 1 and group 2, group 1 and group 3(P<0.05). 4. The shape of the canals after instrumentation varied among the groups. The majority of canals at coronal and curve part for group 1 were round in shape(7 in 10), those at apical part were oval(8 in 10). The majority of canals at coronal part for group 2 were round in shape(7 in 10) and there was no difference in the number of shape at other part. There was no difference in the number of shape at every part for group 3. As above results, NiTi rotary instrumentation showed a trend to remain more centered in the canal than SS file instrumentation. At using NiTi file, coronal shaping with Gates Glidden drill was not statistically different from shaping with GT file. But shaping with GT file showed tapered canals, so it may be said that shaping with GT file is a safe and valuable instrumentation method.

  • PDF

Comparison of the centering ratio and canal curvature reduction according to the apical preparation size using various NiTi rotary instruments (근단부 성형 크기에 따른 다양한 전동 니켈티타늄 파일의 중심 변위율 및 만곡도 감소 비교)

  • Kwak, Sang-Won;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • The Journal of the Korean dental association
    • /
    • v.47 no.7
    • /
    • pp.435-443
    • /
    • 2009
  • The purpose of this study was to compare the centering ratio and reduction of canal curvature according to the preparation sizes of #30, #40 and #50 using three rotary NiTi instruments which have different shaft tapers. Seventy-two simulated root canals in clear resin blocks (Endo Training Bloc; Dentsply Maillefer, Ballaigues, Switzerland) were divided as following 3 groups according to the file system; the 24 canal blocks prepared with each of ProTaper Universal system (Group P), LightSpeed eXtra system (Group L), and K3 (Group K). The pre- and post-instrumented root canals were scanned and superimposed to evaluate and calculate the centering ratio and reduction of canal curvature. Mean scores of each group were statistically analyzed using one-way ANOV A and Duncan's multiple range test for post-hoc comparison. The results were as followings: 1. Group L showed better centering ratio, followed by K and P. And all experimental groups generally showed increasing tendency of centering ratio as the apical size was increasing from #30 to #50, except at 1 mm level of group P where showed reducing tendency of centering ratio. The smaller the ratio, the better the instrument remained centered in the canal. 2. Group P showed more decrease of canal curvature at all apical shaping size (p < 0.05). Under the conditions of this study, the shaft design could affect the quality of canal shaping and the smooth taperless flexible (LightSpeed) shaft design was capable of preparing canals with good morphological characteristics in curved canals.

  • PDF

A COMPARISON OF THE SHAPING ABILITY OF FOUR ROTARY NICKEL-TITANIUM FILES IN SIMULATED ROOT CANALS (엔진구동형 NiTi 파일의 근관성형효과 비교)

  • Kim, Bo-Hye;Choi, Kyoung-Kyu;Park, Sang-Hyuk;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.88-95
    • /
    • 2010
  • The purpose of this study was to compare the root canal shaping ability of 4 rotary NiTi instruments in simulated root canals. For the preparation of thirty two curved root canals, Mtwo instruments using "single length"technique, and Profile, ProTaper Universal, and K3 using crown-down technique (N = 8) were used. All canal samples were prepared by reaching an apical canal size of #30. Pre- and post-instrumentation digital images were recorded and an assessment of canal shape was determined using a computer image analysis program SigmaScan Pro (Systat Software Inc., San Jose, CA, USA). The changes of the dimension of inner walls of canals, (2) the changes of the dimension of outer walls of canals, and (3) the centering ratio were measured at 7 measuring points, and then data were statistically analyzed using one-way ANOVA and Duncan's test. The results were as below; 1. The root canal shaping ability of Profile was significantly faster than that of other rotary NiTi instruments (p < 0.05). 2. The deformation and fracture of all instruments used for this study were not experienced. 3. In the degree of changes of the dimension of inner walls of canals, Profile demonstrated the lowest changes of the dimension of inner walls of canals except at the measuring points of the 1 and 2 mm (p < 0.05). However, the ProTaper Universal showed the highest changes of the dimension of inner walls of canals at all measuring points (p < 0.05). 4. In the degree of changes of the dimension of outer walls of canals, Mtwo demonstrated the lowest changse of the dimension of outer walls of canals except at the measuring point of the 1 mm (p < 0.05). However, Profile exhibited the highest changes of the dimension of outer walls of canals at the measuring points of 3 and 4 mm and ProTaper Universal and K3 showed the largest changes of the dimension of outer walls of canals at the measuring points of 1, 2, 6, and 7 mm (p < 0.05). 5. In degree of centering ratio, Profile demonstrated the least centering ratio comparing with the centering ratio shown by other NiTi instruments at the measuring points of 1, 4, 5, and 6 mm. Results suggest that in the coronal part of canal preparation, active cutting files such as ProTaper Universal may efficiently flare the canal orifice and form a better taper, and in the apical part of the canal, files which have a better centering ability such as Profile may maintain the original canal curvature and reduce the shaping time.

The instrument-centering ability of four Nickel-Titanium instruments in simulated curved root canals (만곡된 레진 모형 근관에서 4종의 엔진 구동형 니켈-티타늄 기구의 근관 중심율 유지 능력)

  • Ku, Jae-Hoon;Chang, Hoon-Sang;Chang, Seok-Woo;Cho, Hwan-Hee;Bae, Ji-Myung;Min, Kyung-San
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.2
    • /
    • pp.113-118
    • /
    • 2006
  • The aim of this study was to evaluate the ability of newly marketed NRT instruments to maintain the original root canal configuration and curvature during preparation in comparison with the three existing instruments in simulated root canals. Simulated canals in resin blocks were prepared with ProFile. K3, ProTaper and NRT instrument (n = 10 canals in each case). Pre- and post-operative images were recorded, and assessment of canal shape was completed with a computer image analysis program. The data were analyzed statistically using the One-way ANOVA followed by Duncan s test. The ability or instruments to remain centered in prepared canals at 1-, 2-mm levels was significantly better in ProFile groups than in other groups (p < 0.05). The change of centering ratio in NRT groups at 5-mm level was significantly greater than ProFile group and at 6- and 7-mm level than all other groups (p < 0.05). Although the NRT system was comparable to other systems in regards to its ability to maintain the canal configuration of apical portion, this system was more influenced by the mid-root curvature due to its stainless-steel files for coronal preflaring.

A STUDY OF WORKING EFFICIENCY AND FILE DEFORMATION OF GT ROTARY FILE IN CURVED CANALS (GT rotary file을 이용한 만곡 근관형성시 작업 효율 및 file 변형 발생에 관한 연구)

  • 신주희;백승호;배광식;임성삼;윤수한;김병현
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.418-435
    • /
    • 2001
  • Root canal preparation process is of utmost importance in successful treatment of root canal. Also, one of the most important purpose of the root canal preparation is to enlarge the root canal three dimensionally without changing the curvature of the root canal However as the curvature of the root canal increases, there are many difficulties involved in formation of optimum root canal. Therefore in order to solve the above mentioned problems, new developments in methods of root canal preparation and equipments for such purposes were made. Recently, vigorous studies about newly introduced engine-driven nickel-ti-tanium rotary file are conducted. As shown in research results to dates, it is well established that the use of nickel-titanium file is better suited for curved root canal than stainless steel file in maintaining the curvature or root canal and reducing the deformation of root canal. However it is also acknowledged that there are a few discrepancies in research results according to protocol, due to failure to remove variables in experiments. In addition, although it is recommended by the manufacturer that the GT rotary file should maintain a low rotational speed of 150~350rpm and 'light pressure' as light as not to break the lead of a pencil, academic studies about the vertical force which is not yet standardized are not sufficiently explored. Therefore, this research devised and utilized a special research equipment to standardize the appropriate range of vertical force for GT rotary file through experiments by breaking of the lead of a pencil as expressed by the manufacturer and to accurately measure factors involved through repeating and recreating the environment of root canal preparation. Forming nine experimental groups by varying the vertical forces (150g. 220g, 300g) and rpm (150rpm, 250rpm, 350rpm), the effects of changing vertical forces and rpm on working efficiency were measured in terms of time expended in root canal preparation by crown-down method using a transparent resin block with 35 degree curvature and GT rotary file (z-test). The following research using this special research equipment that involved nine experimental groups and varying the vertical force for root canal preparation from 300g which is within the normal vertical force range to 700g and 1000g which fall outside the normal rpm range. The results were as follows : 1. Analysis of the experiment results revealed that the time spent in root canal preparation decreased as the vertical forces and rpm increased (p<0.05). Also, the effects of rpm were greater than those of the vertical forces within the normal vertical force range ($\beta$-weight test). 2. Observation of the deformation of GT rotary file revealed that deformation increases in a direct correlation with the vertical force increase and in a reverse correlation with the rpm decrease. In the case of the vertical forces close to the normal range, the probability of GT rotary file deformation were quite different depending on the rpm changes. In the case of greater vertical forces, the occurrences of deformation of the file were more frequent regardless of the rpm changes. 3. Deformation and breakage of file were also commonly observed in the expended time measurement experiments and GT rotary file deformation experiments in which low speed rpm (150rpm) was used and at the curved portion of the resin block.

  • PDF

A Study on the Shaping Ability of Three Different Rotary Nickel-Titanium Instruments in Simulated Curved Root Canal (만곡 근관에서 다양한 엔진 구동형 Nickel-Titanium 파일의 근관 성형능력에 대한 연구)

  • Kim, Kyoung-A;Chon, Seong-Min;Kwon, Su-Mi;Lee, Kwang-Won;Yu, Mi-Kyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.4
    • /
    • pp.293-302
    • /
    • 2007
  • I. Objectives The purpose of this study was to compare the shaping ability between the single length technique performed with Mtwo instruments (VDW, Munich, Germany) and the crown-down technique using K3 (SybronEndo, West Collins, CA, USA) and RaCe (FKG, La Chaux-de-Fonds, Switzerland) instruments. II. Materials & Methods Forty five curved canals in resin blocks were equally divided in to three groups. Group 1 (Mtwo) was instrumented used the full length of canal according to the manufacturer's instructions. The simulated canals was prepared to an instrument size of 35, 0.04 taper canal terminus. In group 2 (Race) and group 3 (K3) was instrumented in a crown-down manner and prepared to an instrument size of 30, 0.06 taper canal terminus. Pre- and post-instrumentation images were scanned and assessment of canal shape was completed with a computer image analysis program. Material removal was measured at 7 measuring points, beginning 1mm from the end point of preparation. Differenced of centering ratio were statistically analyzed using One-way ANOVA followed by Duncan's test. II. Results & Conclusion There was no significant difference on 1, 2, 3 and 7mm measuring point. At 4 and 5 measuring point, significant difference showed between the Mtow instruments and other two instruments. (p<0.05)

Obturation efficiency of non-standardized gutta-percha cone in curved root canals prepared with 0.06 taper nickel-titanium instruments (0.06-경사도의 니켈-티타늄 기구로 형성된 레진 만곡근관에서 비표준화 GUTTA-PERCHA CONE의 근관충전 효율)

  • Lee, Eun-Ah;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • The purpose of this study was to evaluate the obturation efficiency of a non-standardized gutta-percha cone in curved root canals prepared with 0.06 taper nickel-titanium instruments. Sixty simulated curved root canals in clear resin blocks were prepared with crown-down technique using 0.06 taper rotary $ProTaper^{TM}$and ProFile (Dentsply-Maillefer) until apical canal was size 30. Root canals were randomly divided into 4 groups of 15 blocks and obturated with cold-laterally compacted gutta-percha technique by using either a non-standardized size medium gutta-percha cone or an ISO-standardized size 30 one as a master cone. Gutta-percha area ratio were calculated at apical levels of 1, 3 and 5 mm using AutoCAD 2000 after cross-sectioning, and the data were analyzed with one-way and two-way ANOVAs and Duncan's multiple range test. Non-standardized size medium cone groups showed significantly higher gutta-percha area ratio than standardized cone groups at all apical levels (p < 0.01). Non-standardized cone groups used significantly less accessory cones than standardized cone groups (p < 0.01).

TRANSPORTATION OF CURVED CANAL AFTER CANAL ENLARGEMENT ACCORDING TO FILING INSTRUMENTS (만곡근관의 확대시 기구에 따른 형태변화에 관한 연구)

  • Lee, Seok-Jong;Shin, Young-Guen;Hwang, Ho-Keel
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.3
    • /
    • pp.503-510
    • /
    • 1999
  • The purpose of this study was to evaluate the amount of transportation of original canal, zip formation, permanent deformation and fracture of instruments after canal enlargement. In this study, the 60 resin blocks that have curved canals were randomly divided into 3 experimental groups with 20 teeth each according to instrument types and filling methods for canal enlargement. The curved canals of each experimental groups were enlarged to No 40 ISO size with the K-flexo stainless steel file (Group 1), Engine-driven Ni-Ti Profile new series(Group 2) and Engine-driven Ni-Ti Quantec 2000 series(Group 3) according to the manufacturer's recommendation. Pre- and postoperative X-rays were taken at same position and the films were scanned and the canal images were traced to determine the canal curvature according to the method of Schneider. The amount of reduction in canal curvature were calculated between pre- and postoperative X-rays. In addition to zip formation, permanent deformation and fracture of instruments were examined after canal enlargement. The results were as follows : 1. All experimental groups showed some loss of canal curvature after instrumentation. There was a significant change in curvature between before and after instrumentation in each group(p<0.001). 2. Engine-driven Ni-Ti instrumentations resulted in an average loss of curvature of 2.36 degrees for Profile new series, 3.43 degrees for Quantec series, and hand instrumentation showed an average loss of curvature of 6.48 degrees for K-flexo file. There was a statistical significant difference between hand instrumentation and engine-driven Ni-Ti instrumentations(p<0.05). But there was no statistical difference between Profile new series and Quantec series. 3. There were many apical zip formations in group 1(Hand instrumentation). But there were no apical zip formations in group 2,3(Engine-driven Ni-Ti instrumentation). 4. The instrument deformation occured 9 cases in group 1(K-flexo file), 2 cases in group 2(Profile new series) and 3 cases in group 3(Quantec) after instrumentation. And the instrument fracture occured 1 case in each group. The results showed that the engine-driven Ni-Ti instruments, if we use carefully according to manufacturer's recommendations, can be use effectively for instrumenting the curved root canals in case of the MAF was over size 40.

  • PDF

APICAL FITNESS OF NON-STANDARDIZED GUTTA-PERCHA CONES IN SIMULATED ROOT CANALS PREPARED WITH ROTARY ROOT CANAL INSTRUMENTS (전동화일로 형성된 근관에서 비표준화 Gutta-percha Cone의 적합성)

  • Kwon, O-Sang;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.390-398
    • /
    • 2000
  • The purpose of this study was to evaluate the apical fitness of non-standardized gutta-percha cones in root canals prepared with rotary Ni-Ti root canal instruments of various tapers and apical tip sizes. Simulated sixty curved root canals of plastic blocks were prepared with crown-down technique using rotary root canal instruments of Maillefer ProFile$^{(R)}$ .04 and .06 taper (Maillefer Instrument SA, Switzerland). Specimens were divided into six groups and prepared as follows: Group 1, prepared up to size 25 of .04 taper ; Group 2, prepared up to size 30 of .04 taper ; Group 3, prepared up to size 35 of .04 taper ; Group 4, prepared up to size 25 of .06 taper ; Group 5, prepared up to size 30 of .06 taper ; Group 6 ; prepared up to size 35 of .06 taper. After cutting off the coronal portion of plastic, blocks perpendicular to the long axis of the canal with the use of a diamond saw, apical 5mm of canal space was analyzed. Prepared apical canal spaces were duplicated using rubber base impression material to evaluate two dimensional total area of apical canal space. Various sized gutta-percha cones were applied in the 5mm-apical canal space, which were size 25, size 30 and size 35 standardized gutta-percha cone, Diadent Dia-Pro ISO-.04$^{TM}$ and .06$^{TM}$(Diadent, Korea), and medium-fine (MF), fine (F), fine-medium (FM) and medium (M) sized non-standardized gutta-percha cones (Diadent, Korea). Coronal excess gutta-percha were cut off with a sharp blade. Photographs of impressed apical canal spaces and gutta-percha cones were taken with a CCD camera under a stereomicroscope and stored in a computer. Areas of the total canal space and gutta-percha cones were calculated using a digitalized image analysing program, CompuScope (Sungjin Multimedia Co., Korea). Ratio of apical fitness was obtained by calculating the area of gutta-percha cone to the total area of the canal space. The data were analysed statistically using One-way Analysis of Variance and Duncan's Multiple Range Test. The results were as follows: 1. In canals prepared up to size 25 ProFile$^{(R)}$ of .04 taper, non-standardized MF and F cones occupied significantly more canal space than Dia-Pro ISO-.04$^{TM}$ or size 25 standardized ones (p<0.05). 2. In canals prepared up to size 30 ProFile$^{(R)}$ of .04 taper, non-standardized F cones occupied significantly more canal space than Dia-Pro ISO-.04$^{TM}$ or size 30 standardized ones (p<0.05), and non-standardized MF cones occupied more canal space than size 30 standardized ones (p<0.05). 3. In canals prepared up to size 35 ProFile$^{(R)}$ of .04 taper, there was no significant difference in canal space occupation among non-standardized MF and F, size 35 standardized, and Dia-Pro ISO-.04$^{TM}$ cones (p>0.05). 4. In canals prepared up to size 25 ProFile$^{(R)}$ of .06 taper, non-standardized MF and F cones occupied significantly more canal space than Dia-Pro ISO-.06$^{TM}$, or size 25 standardized ones (p<0.05), and Dia-Pro ISO-.06$^{TM}$, cones occupied significantly more space than size 25 standardized ones (p<0.05). 5. In canals prepared up to size 30 ProFile$^{(R)}$ of .06 taper, non-standardized FM cones occupied significantly more canal space than Dia-Pro ISO-.06$^{TM}$ or size 30 standardized ones (p<0.05), and non-standardized F cones occupied significantly more canal space than size 30 standardized ones (p<0.05). 6. In canals prepared up to size 35 ProFile$^{(R)}$ of .06 taper, non-standardized M and FM, Dia-Pro ISO-.06$^{TM}$ occupied significantly more canal space than size 35 standardized ones (p<0.05). In summary, in both canals prepared with .04 or .06 taper ProFile$^{(R)}$, non-standardized cones showed better fitness than Dia-Pro ISO$^{TM}$ or standardized ones, which was more characteristic in smaller canals.

  • PDF

SEM EVALUATION OF THE PREPARED ROOT CANALS BY HAND AND Ni-Ti ROTARY ROOT CANAL INSTRUMENTS (Hand & rotary root canal instrument의 근관내 삭제 형태에 관한 전자현미경적 비교)

  • Oh, Tae-Seok;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.477-486
    • /
    • 1998
  • Recently the development of rotary instrument makes it possible that in root canal treatment operator saves much more time, maintans original curved canal shape and easily prepares continuous tapered root canal. The purpose of this experiment was to examine the smoothness of the internal surface of prepared root canal and the effectiveness of debridement in prepared root canal by SEM for the comparison of hand and Ni-Ti rotary instrument. 25 extracted human teeth were access opened and # 10 K-type file was introduced into canal until it was appeared at the apical foramen. The working length was established by subtracting 0.5mm from this measurement. Group 1. The root canal preparation was done to # 30 with working length and then step-back until # 45 with K-Flexofile (Maillefer, Swiss). Group 2. Root canal preparation was done by Naviflex Ni-Ti file (Brasseler, USA) as the same technique with group 1. Group 3. Canal was prepared by Profile .04 (Maillefer, Swiss) taper until #30. Group 4. With use of Quantec (Tycom, USA) root canal was prepared from file number 1 to 8. In group 1 and 2, the root canal irrigant was NaOCl and the other groups, NaOCl and RC-prep (Premine Dental Products, USA) was used. The prepared teeth were notched with high-speed bur as bucco-lingual direction and fractured with chisel and mallet, then examined with SEM. Group 1 showed smooth internal surface. There were scratches mainly to the axial direction. Group 2 showed similar characteristics to those in group 1. Group 3 showed more smoother and linear cutting surface with bised scratches. Group 4 has the almost same characteristics group 3 and there was no difference in the file design. Ni-Ti rotary root canal instrument prepare the dentinal wall more smoother than hand instrument. The effectiveness of debridement was not fully affected by file design. The isthmus area and accessory canals of the root canal system were not prepared in any group. According to the result, hand and rotary type instrumentation techniques were effective in removal of major amount of tissue from root canal but it was not complete. In the direction of cutting movement there was difference between them.

  • PDF