• 제목/요약/키워드: Curved composite structure

검색결과 49건 처리시간 0.017초

레이저 초음파 기반 반사식 회전 검사 기법을 이용한 오토클레이브 가공 L 형 복합재 구조물의 모서리 검사 (Corner Inspection of Autoclave-cured L-shaped Composite Structure using Pulse-echo Rotation Scanning Scheme based on Laser Ultrasonic)

  • 이영준;이정률;홍성진
    • Composites Research
    • /
    • 제31권5호
    • /
    • pp.246-250
    • /
    • 2018
  • 본 연구에서는 곡면 복합재 구조물의 모서리에 위치한 결함을 검사하고 가시화하기 위해 제안된 레이저 초음파 기반 회전식 검사 기법을 소개한다. 모서리 부위에 결함이 위치한 L 형 복합재 구조물을 레이저 초음파 기반 회전식 검사 기법을 이용하여 검사하였다. L 형 시편은 층간분리 손상을 모사하기 위해 각기 다른 세 가지 깊이에 위치한 인공 결함을 포함하고 있다. 모든 인공 결함이 각각의 위치한 깊이에 따라 다른 시간대에 선명하게 탐지되었다. 검사결과는 제안된 방법이 어떠한 특별한 도구 없이도 곡면 복합재 구조물의 모서리 부위의 검사에 적합하다는 것을 보여준다.

Vibro-acoustic analysis of un-baffled curved composite panels with experimental validation

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.93-107
    • /
    • 2017
  • The article presents the vibration and acoustic responses of un-baffled doubly curved laminated composite panel structure under the excitation of a harmonic point load. The structural responses are obtained using a simulation model via ANSYS including the effect various geometries (cylindrical, elliptical, spherical and hyperboloid). Initially, the model has been established by solving adequate number of available examples to show the convergence and comparison behaviour of the natural frequencies. Further, the acoustic responses are obtained using an indirect boundary element approach for the coupled fluid-structure analysis in LMS Virtual.lab by importing the natural frequency values. Subsequently, the values for the sound power level are computed using the present numerical model and compared with that of the available published results and in-house experimentally obtained data. Further, the acoustic responses (mean-square velocity, radiation efficiency and sound power level) of the doubly curved layered structures are evaluated using the current simulation model via several numerical experimentations for different structural parameters and corresponding discussions are provided in detail.

복합재료와 압전재료로 구성된 곡면형 작동기의 열변형 및 잔류응력 해석 (Thermal Deformation and Residual Stress Analysis of Lightweight Piezo-composite Curved Actuator)

  • 정재한;박기훈;박훈철;윤광준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.126-129
    • /
    • 2001
  • LIPCA (LIghtweight Piezo-composite Curved Actuator) is an actuator device which is lighter than other conventional piezoelectric ceramic type actuator. LIPCA is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. LIPCA has curved shape like a typical THUNDER (thin-layer composite unimorph feroelectric driver and sensor), but it is lighter an than THUNDER. Since the curved shape of LIPCA is from the thermal deformation during the manufacturing process of unsymmetrically laminated lay-up structure, an analysis for the thermal deformation and residual stresses induced during the manufacturing process is very important for an optimal design to increase the performance of LIPCA. To investigate the thermal deformation behavior and the induced residual stresses of LIPCA at room temperature, the curvatures of LIPCA were measured and compared with those predicted from the analysis using the classical lamination theory. A methodology is being studied to find an optimal stacking sequence and geometry of LIPCA to have larger specific actuating displacement and higher force. The residual stresses induced during the cooling process of the piezo-composite actuators have been calculated. A lay-up geometry for the PZT ceramic layer to have compression stress in the geometrical principal direction has been designed.

  • PDF

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element

  • Katariya, Pankaj V.;Panda, Subrata K.;Mahapatra, Trupti R.
    • Advances in materials Research
    • /
    • 제6권4호
    • /
    • pp.349-361
    • /
    • 2017
  • The nonlinear thermal buckling load parameter of the laminated composite panel structure is investigated numerically using the higher-order theory including the stretching effect through the thickness and presented in this research article. The large geometrical distortion of the curved panel structure due to the elevated thermal loading is modeled via Green-Lagrange strain field including all of the higher-order terms to achieve the required generality. The desired solutions are obtained numerically using the finite element steps in conjunction with the direct iterative method. The concurrence of the present nonlinear panel model has been established via adequate comparison study with available published data. Finally, the effect of different influential parameters which affect the nonlinear buckling strength of laminated composite structure are examined through numerous numerical examples and discussed in details.

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

복합재 구조물의 모서리 곡면 부위에 대한 두께방향 응력 연구 (Study on through the thickness stresses in the corner radius of a laminated composite structure)

  • 김성준;황인희
    • 한국항공우주학회지
    • /
    • 제41권8호
    • /
    • pp.665-672
    • /
    • 2013
  • 적층된 복합재 구조물의 강도와 강성 저하를 발생시키는 중요원인 중의 하나는 복합재 층 사이에 발생하는 층간 분리이다. 적용되는 대부분의 복합재 구조물은 어느 정도 곡률을 가지고 있다. 만약 굽은 복합재 구조물이 굽힘 하중을 받게 되면 평평하게 되려는 현상 때문에 두께 방향의 수직응력이 발생하게 되며, 최대 응력이 발생되는 곳에서 층간 분리가 발생한다. 본 논문에서는 굽은 복합적층 보의 반경방향 응력을 결정하는 방법을 설명하고, 층간 분리 응력에 미치는 적층 순서의 영향을 검토하였다. 그리고 층간분리 응력의 크기와 위치를 이론적인 해와 유한요소 방법을 이용하여 해석하고 비교하였다.

Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, AMS
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.63-74
    • /
    • 2020
  • The present research investigates post-buckling behavior of geometrically imperfect tapered curved micro-panels made of graphene oxide powder (GOP) reinforced composite. Micro-scale effects on the panel structure have been included based on strain gradient elasticity. Micro-panel is considered to be tapered based on thickness variation along longitudinal direction. Weight fractions of uniformly and linearly distributed GOPs are included in material properties based on Halpin-Tsai homogenization scheme considering. Post-buckling curves have been determined based on both perfect and imperfect micro-panel assumptions. It is found that post-buckling curves are varying with the changes of GOPs weight fraction, geometric imperfection, GOP distribution type, variable thickness parameters, panel curvature radius and strain gradient.

Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM

  • Allahkarami, Farshid;Nikkhah-Bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.141-155
    • /
    • 2017
  • This paper presents an investigation into the magneto-thermo-mechanical vibration and damping of a viscoelastic functionally graded-carbon nanotubes (FG-CNTs)-reinforced curved microbeam based on Timoshenko beam and strain gradient theories. The structure is surrounded by a viscoelastic medium which is simulated with spring, damper and shear elements. The effective temperature-dependent material properties of the CNTs-reinforced composite beam are obtained using the extended rule of mixture. The structure is assumed to be subjected to a longitudinal magnetic field. The governing equations of motion are derived using Hamilton's principle and solved by employing differential quadrature method (DQM). The effect of various parameter like volume percent and distribution type of CNTs, temperature change, magnetic field, boundary conditions, material length scale parameter, central angle, viscoelastic medium and structural damping on the vibration and damping behaviors of the nanocomposite curved microbeam is examined. The results show that with increasing volume percent of CNTs and considering magnetic field, material length scale parameter and viscoelastic medium, the frequency of the system increases and critically damped situation occurs at higher values of damper constant. In addition, the structure with FGX distribution type of CNTs has the highest stiffness. It is also observed that increasing temperature, structural damping and central angle of curved microbeam decreases the frequency of the system.

굴곡 형상 복합재 구조물의 스프링-인 예측 (Prediction of Spring-in of Curved Laminated Composite Structure)

  • 오재민;김위대
    • 한국항공우주학회지
    • /
    • 제43권1호
    • /
    • pp.1-7
    • /
    • 2015
  • 본 연구에서는 탄소섬유강화 복합재를 적층각과 적층순서에 따라 C-channel 형상에서 발생하는 스프링-인을 유한요소해석(ABAQUS)을 통해 예측하였다. 복합재 제작공정에서 냉각시의 큰 온도차 및 적층각에 따른 열팽창계수 및 화학적 수축계수의 차이로 인해 변형(스프링-인)이 발생한다. 이러한 변형은 제품의 품질과 직결되는 문제이며, 반드시 고려되어야 할 사항이다. 유한요소해석 시 CHILE모델과 화학적 수축을 고려한 서브루틴을 제작하여 적용하였으며, [0/X/Y/90]s case에 대해 X,Y를 $0{\sim}90^{\circ}$까지 변화시키며 각 case에 대한 스프링-인 발생량을 예측, 분석하였다.