• Title/Summary/Keyword: Curve shape

Search Result 1,084, Processing Time 0.2 seconds

Application of Quadratic Algebraic Curve for 2D Collision-Free Path Planning and Path Space Construction

  • Namgung, Ihn
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.107-117
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on an algebraic curve as well as the concept of path space is developed. Robot path planning has so far been concerned with generating a single collision-free path connecting two specified points in a given robot workspace with appropriate constraints. In this paper, a novel concept of path space (PS) is introduced. A PS is a set of points that represent a connection between two points in Euclidean metric space. A geometry mapping (GM) for the systematic construction of path space is also developed. A GM based on the 2$^{nd}$ order base curve, specifically Bezier curve of order two is investigated for the construction of PS and for collision-free path planning. The Bezier curve of order two consists of three vertices that are the start, S, the goal, G, and the middle vertex. The middle vertex is used to control the shape of the curve, and the origin of the local coordinate (p, $\theta$) is set at the centre of S and G. The extreme locus of the base curve should cover the entire area of actual workspace (AWS). The area defined by the extreme locus of the path is defined as quadratic workspace (QWS). The interference of the path with obstacles creates images in the PS. The clear areas of the PS that are not mapped by obstacle images identify collision-free paths. Hence, the PS approach converts path planning in Euclidean space into a point selection problem in path space. This also makes it possible to impose additional constraints such as determining the shortest path or the safest path in the search of the collision-free path. The QWS GM algorithm is implemented on various computer systems. Simulations are carried out to measure performance of the algorithm and show the execution time in the range of 0.0008 ~ 0.0014 sec.

Effects of season and age at first calving on genetic and phenotypic characteristics of lactation curve parameters in Holstein cows

  • Torshizi, Mahdi Elahi
    • Journal of Animal Science and Technology
    • /
    • v.58 no.2
    • /
    • pp.8.1-8.14
    • /
    • 2016
  • In this research data representing 72,946 primiparous cows from 724 herds with 638,063 total test day records calved between 2001 and 2011. These data were analysed to determine the effect of age at first and season of calving on parameters of the Wood lactation curve. Also, genetic trend of the lactation curve parameters in different calving years were evaluated. The results indicate that the highest rate of atypical lactation curve was related to cows that calved in summer (28.05 %). The maximum phenotypic relationship between initial milk yield and total 305-d milk yield was observed in cows calved in spring (0.40). The role of peak yield is more than peak time on 305-d total milk yield in primiparous Holstein. One month increase in age at first calving from 18 to 26 month raised 305-d milk yield by around 138 kg and from 27 to 32 month decreased by 61 kg. The persistency of lactation between 101 and 200 days is higher than that of 201-305 days. Our results indicate that the shape of lactation curve is largely dependent on the season of calving (higher level of milk production in cows which calved in autumn and winter). The heritabilities of parameters of lactation curve and persistency measures were low. The genetic trends for peak time, peak yield and 305-d milk yields were positive and estimated to be 0.019, 0.021 and 8.13 kg/year respectively. So the range from 24 to 26.5 month of calving is the optimum calving time in primiparous Holstein for maximizing 305-d milk yield.

An evaluation of curve of Spee using cone beam computerized tomography in Korean (한국인에서 콘빔형 전산화단층영상을 이용한 스피만곡 평가)

  • Oh, Sang-Chun;Kim, Seul-Gi;Kim, Yu-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.93-101
    • /
    • 2014
  • Purpose: The aim of this study is to investigate the typical shape of the curve of Spee in Korean and analyze the curve of Spee according to gender, age, and left and right. Materials and Methods: Among the patient of Wonkwang University Sanbon Dental Hospital taking cone beam computerized tomography, the images of 500 Koreans (311 males and 189 females) who qualifies the criteria of this study were selected and their curve of Spee were analysed in sagittal plane. Results: The mean radius of curve of Spee in Korean was 91.4 mm. There was statistically significant difference between male (94.6 mm) and female (86.1 mm) by gender, but not significant differences by age and between right and left side. Conclusion: Within the limitation of this study, the smaller radius (91.4 mm) of Korean than the 4-inch (101.6 mm) value advocated by Monson was meaned that it would be need to reconsider the application of the curve of Spee in all cases when occlusal plane is reconstructed in Korean.

Interactive G$^1$ Splines with Tangent Specification Method (접선 지정법을 이용한 대화형 G$^1$스플라인)

  • Ju, U-Seok;Park, Gyeong-Hui;Lee, Hui-Seung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.531-540
    • /
    • 1994
  • Spline curve scheme is the most valuable tool for the CAD of industrial products. Hence, the development of a new, effective curve scheme can have immediate impact on the current design industries. This paper develops and implements a new methodology for the implementation of the visually continuous class of splines which can produce a more flexible and diverse curve shapes. This class of splines has advantaged over existing splines in that it can accommodate wider range of shapes while maintaining the interpolators property of the ordinary cardinal splines. Most importantly, we avoid using the previous method of implementing G$^1$ curves, where users must specify scalar values for the control of curve shapes. We derive and implement an easy-to -use transformation between the user-specified graphical tangent vectors and the actual parameters for the resulting curve. Since the resulting curve shape reflects original tangential direction faithfully, CAD users can simply represent approximate curve shapes with proper tangents. Consequently, a simple user interface device such as a mouse can effectively produce a various spline curves using the proposed spline tool.

  • PDF

Thermoluminescence (TL) of Minerals Separated from Irradiated Mussel

  • Yi, Sang-Duk;Oh, Man-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.1
    • /
    • pp.17-21
    • /
    • 2005
  • This study was carried out to determine whether detection of minerals separated from irradiated mussel could be could be done by thermoluminescence (TL) method. After the minerals were separated by sodium polytungstate solution (2.0 g/mL) from irradiated mussel, organic compounds remaining in the minerals were removed by acid-base treatment and dried at 50℃ overnight, and then the minerals were measured through TL. The TL intensities of separated minerals at different irradiation doses during storage conditions of room and darkroom were obtained. TL intensity of first glow curves for minerals separated from irradiated mussel showed linear increase from the control to 5 kGy and slight increase from 5 kGy to 10 kGy. Since glow curve ratios of G2, G3 and G4, calculated from re-irradiated minerals measured immediately after irradiation and after storage of three months were over 0.5, detection of irradiation was possible. G1, which showed the glow curve ratios above 0.1, was classified as non-irradiated samples because the unique first glow curve was not found within the recommended temperature interval (150-230℃). Hence, on the basis of TL intensity, and glow curve ratio and shape, it is possible to correctly identify irradaited mussels after mineral separation during storage.

Experimental Study on the Forming Limit Curve of Aluminum Alloy Sheets using Digital Image Correlation (디지털 이미지 상관관계를 이용한 알루미늄 합금 판재의 성형한계도 평가)

  • Kim, Yongbae;Park, Jungsoo;Song, Junghan
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2015
  • Sheet metal formability can be defined as the ability of metal to deform without necking or fracture into desired shape. Every sheet metal can be deformed without failure only up to a certain limit, which is normally known as forming limit curve(FLC). In this paper, the dome stretching tests and tensile tests have been performed to obtain forming limit curve of aluminum alloy. During the experiment, failure strain is measured using digital image correlation(DIC) method. DIC method is a whole-field measurement technique that acquires surface displacements and strains from images information which characterized a random speckle as intensity grey levels. Recently years, this DIC method is being developed and used increasingly in various research. DIC results demonstrated the usefulness and ability to determine a strain.

Electric Field Optimization using the NURB curve in a Gas-Insulated Switchgear (NURB 곡선을 이용한 가스절연 원통형 관로 내에서의 전계 최적화)

  • Han, In-Su;Kim, Eung-Sik;Min, Suk-Won;Lee, June-Ho;Park, Jong-Keun;Lee, Tae-Hyung;Park, Choon-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.548-558
    • /
    • 2009
  • This paper attempts to develop an algorithm which optimizes the electric field through the so-called NURB(Non-Uniform Rational B-spline) curve in order to improve the insulation capacity. In particular, the NURB curve is a kind of interpolation curve that can be expressed by a few variables. The electric field of a conductor is computed by Charge Simulation Method(CSM) while that of a spacer by Surface Charge Method(SCM); this mixed calculation method is adopted for the electric field optimization. For calculation of the initial and optimal shapes, the Gauss-Newton method, which is quite easy to formulate and has slightly faster convergence rate than other optimization techniques, was used. The tangential electric field, the total electric field, and the product of the tangential electric field and area (Area Effect) were chosen as the optimization objective function by the average value of electric field for the determined initial shape.

Reconstructing Curves With Self-intersections (자기교차를 가지는 곡선 재구성)

  • Kim, Hyoung-Seok B.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2016-2022
    • /
    • 2010
  • We propose a new algorithm for reconstructing curves with self-intersections from sample points. In general, the result of curve reconstruction depends on how to select and order the representative points to resemble the shape of sample points. Most of the previous point ordering approaches utilize the Euclidean distance to compute the proximity of sample points without directional information, so they can not solve the non-simple curve reconstruction problem. In this paper, we develop a new distance estimating the adjacency between sample points, which is derived from the standard normal distribution of Brownian motion. Experimental results show that this approach is very effective to non-simple curve reconstruction.

Experimental und Numerical Sensitivity Analyses on Push Pull Tracer Tests

  • Hwang, Hyeon-Tae;Lee, Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.312-316
    • /
    • 2004
  • Single-well tracer tests, especially push pull tracer tests, are more effective to estimate hydraulic parameters and microbial metabolic activities in terms of duration and cost compared to multi-well tracer tests. However, there are some drawbacks in accuracy, complicated data analysis and uniqueness. These shortages are thought to be derived from the applied conditions which affect mass recovery curve and breakthrough curve. Factors such as extraction rate, resting period, hydraulic conductivity and hydraulic gradient are considered as the major factors determining the mass recovery rate and shape of the breakthrough curve. The results of the sensitivity analysis are summarized as follows: 1) the significant change in concentration of breakthrough curve is obtained when the extraction rate increases. This effect would also be much higher if the hydraulic conductivity is lower; 2) the mass recovery rate decreases with the increase of resting time, and the difference of mass recovery rates for different resting times is inversely proportional to the hydraulic conductivity; 3) the sensitivity values decrease with time. The hydraulic conductivity affects not only the early period, but the later period of the breakthrough curves; 4) The influence of the hydraulic gradient on the breakthrough curves is greater at earlier stage than at later stage. The mass recovery rate is inversely proportional to the hydraulic gradient.

  • PDF

2D genus topology of 21-cm differential brightness temperature during cosmic reionization

  • Ahn, Kyung-Jin;Hong, Sungwook E.;Park, Chang-Bom;Kim, Uu-Han;Iliev, Ilian T.;Mellema, Garrelt
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.43.1-43.1
    • /
    • 2010
  • A novel method to characterize the topology of the early-universe intergalactic medium during the epoch of cosmic reionization is presented. The 21-cm radiation background from high redshift is analyzed through calculation of the 2-dimensional (2D) genus. The radiative transfer of hydrogen-ionizing photons and ionization-rate equations are calculated in a suite of numerical simulations under various input parameters. The 2D genus is calculated from the mock 21-cm images of high-redshift universe. We construct the 2D genus curve by varying the threshold differential brightness temperature, and compare this to the 2D genus curve of the underlying density field. We find that (1) the 2D genus curve reflects the evolutionary track of cosmic reionization and (2) the 2D genus curve can discriminate between certain reionization scenarios and thus indirectly probe the properties of radiation-sources. Choosing the right beam shape of a radio antenna is found crucial for this analysis. Square Kilometer Array (SKA) is found to be a suitable apparatus for this analysis in terms of sensitivity, even though some deterioration of the data for this purpose is unavoidable under the planned size of the antenna core.

  • PDF