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Application of Quadratic Algebraic Curve for 2D Collision-Free

Path Planning and Path Space Construction

Ihn Namgung

Abstract: A new algorithm for planning a collision-free path based on an algebraic curve as
well as the concept of path space is developed. Robot path planning has so far been concerned
with generating a single collision-free path connecting two specified points in a given robot
workspace with appropriate constraints. In this paper, a novel concept of path space (PS) is
introduced. A PS is a set of points that represent a connection between two points in Euclid-
ean metric space. A geometry mapping (GM) for the systematic construction of path space is
also developed. A GM based on the 2™ order base curve, specifically Bézier curve of order
two is investigated for the construction of PS and for collision-free path planning. The Bézier
curve of order two consists of three vertices that are the start, S, the goal, G, and the middle
vertex. The middle vertex is used to control the shape of the curve, and the origin of the local
coordinate (p, 8) is set at the centre of S and G. The extreme locus of the base curve should
cover the entire area of actual workspace (AWS). The area defined by the extreme locus of the
path is defined as quadratic workspace (QWS). The interference of the path with obstacles
creates images in the PS. The clear areas of the PS that are not mapped by obstacle images
identify collision-free paths. Hence, the PS approach converts path planning in Euclidean
space into a point selection problem in path space. This also makes it possible to impose addi-
tional constraints such as determining the shortest path or the safest path in the search of the
collision-free path. The QWS GM algorithm is implemented on various computer systems.
Simulations are carried out to measure performance of the algorithm and show the execution
time in the range of 0.0008~0.0014 sec.
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robot task planning.

1. INTRODUCTION

Determining a collision-free path or collision
avoidance is the most fundamental area of research for
the intelligent robot or autonomous robot. Path
planning problems can be broadly categorized into
two fields. One is sensor based collision avoidance
and path generation and the other is an algorithmic
approach for path planning, which assumes
knowledge of robot surroundings by a vision system
and other means. This paper belongs to the latter
approach.

Numerous methods are proposed and demonstrated
for the path planning problem. A rather extensive
review of the algorithmic approach for path planning
was reviewed in Namgung [1]. Up to now, the
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majority of methods have used some form of iteration;
therefore their performance is unpredictable and they
take a long time to complete. They are also unsuitable
for real-time control systems and have an inability to
easily control failure criteria. It is strongly desirable to
find a method that does not employ an iterative
method for finding a collision-free path.

Another aspect is that all path planning methods so
far presented or published are concerned with
producing only one path. However, theoretically,
collision-free paths connecting two points consist of
not just one, but infinite numbers. Hence from a
mathematical point of view, a path connecting two
points in Euclidean space belongs to any path space
that can be constructed. All collision-free paths belong
to a class of path space defined as a collision-free path
space, which is a subset of the entire path space.

The introduction of the path space concept in robot
path planning makes it possible to address additional
constraints such as construction of the shortest path,
the safest path or the minimum energy path from a
particular class of path space. In order to formulate
path space, a coordinate space concept must be used
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because it is the only way for the systematic construc-
tion of the path space. Namgung and Duffy [2] intro-
duced the use of an algebraic curve for path planning
and the construction of path space is a natural exten-
sion of this method. The next section reiterates the
path space concepts from Namgung [1] to give the
general idea of path space. This paper details how path
space can be constructed with a simple curve and then
used to find a collision-free path.

2. THEORY

2.1. Concepts of path space

Let W be the robot workspace in Euclidean space,
and S and G be the start and goal points (i.e. S, G €
W). L represents a path based on a class of algebraic
curves that connect points S and G. Let Lg,.. be a
collision-free path and L, be an obstacle interfering
path. Now define an n-dimensional path space (PS,)
that contains all possible paths based on the same
class of algebraic curves as follows:

0 o )
PSnZZL?:erjl‘reeii'i'zL?ntii’nzl’“"oo (1)
=0 i=0 i=0

where PS,, is n-dimensional path space and n is the
number of parameters that are used to define path 17 .

For example, PS; = Lgree o + Linc o 1S @ special case
that consists of only one path, the direct path from S
to G. PS; is a 2-dimensional path space based on two
independent parameters, which may be based on two
linear curves or a single quadratic curve in 2-
dimensions. PS; is a 3-dimensional path space based
on three independent parameters, which may be a
cubic polynomial curve or a combination of a linear
and a quadratic algebraic curve, etc.

Clearly, an n-dimensional path space (PS,) consists
of collision-free path space (PS,f..) and obstacle
interfering path space (PSy.int)-

PSn = PSn-free + PSn—int (2)
The complete PS, denoted as CPS, is the entire path
space that consists of all path space classes.

cps = ) PS, 3)
n=1

The relationships are graphically shown in Fig. 1.

The methods for object modeling or configuration
space can be used in conjunction with path space
construction [3-6]. With object modeling or
configuration space, a robot can be modeled as a point,
and a collision-free path connecting the start, S, to the
goal, G, position can be generated using the method
developed here. The advantage of path space concept
is that it allows additional constraints such as the

Configuration space
or workspace
represented

Object modeler space,

or configuration SpuC\

Configuration Space
or Object Modeler, &

Minimum time
search path

Path space (L)

Collision-free
path space (L¢)

Shortest
Fig. 1. Concept of PS and relationship with the robot
workspace.

shortest path, the minimum time search path or the
minimum energy path, etc. to be imposed in the search
of a collision-free path. The additional constraints
create a subset of the collision-free path, see Fig. 1.

In this paper, one-dimensional path space, PS;, and
two-dimensional path space based on linear algebraic
curve, PS,, are investigated. Note that the collision-
free path algorithm can be applied to mobile robots or
the robot manipulators with appropriate configuration
space or object modeling. In order to apply the
algorithm to the robot manipulators, configuration
space must be obtained first, and then the collision-
free path algorithm can be applied to the configuration
space. For the mobile robot, it is not necessary to
construct the configuration space and one may
practically proceed with the appropriate object
modeling technique.

2.2. Algebraic curve for path planning

The problem of finding a collision-free path is here
viewed as a geometric one requiring the solution to
consist of a coordinated curve. The solution could be a
connection of straight paths, a connection of straight
and curved paths, a connection of curved paths, or a
high-order polynomial curve. The collision-free path,
therefore, can be expressed as a connection of
algebraic curves in the Euclidean space. An algebraic
curve in Euclidean space can be represented in
implicit form (F(x, y) = 0), or in explicit form (y=f(x)),
or in parametric form (x=f(s), y=g(t)). For some
curves, for example closed curve or multi-valued
curve, it is impossible to express the curve in explicit
form. The explicit or implicit form of the curve may
also suffer from having an infinite slope. On the other
hand, parametric representation has many advantages
over other forms, notably the inherent directional
property it contains. The directional property simplifies
the complexity of computation, and this is one reason
that parametric curves/surfaces are widely used for
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Fig. 3. Direct path and obstacle interference.

Computer Graphics and CAD/CAM {7, 8]. Namgung
and Duffy {2, 9] introduced the use of parametric
curves for robot path planning.

A collision-free path can be a series of connected
line segments shown as path (a) in Fig. 2, or a high
order polynomial curve shown as path (b) in Fig. 2.
Whether the path is a connected line segment or a
single polynomial curve, the shape of the curve must
be controllable and the interference with any of the
obstacles should be determined easily. It is clear that a
collision-free path can be constructed by using
algebraic curves,

For example, in Fig. 2 path (a), the intermediate
connection point controls the shape of path (a) by
changing their location. In addition to controlling the
shape of the path, the defining parameters of
connection points are used to create images of the
obstacle by plotting the obstacle interference. The
region of parameter space causing obstacle
interference is the mapped image of the obstacle, and
the empty space where the obstacle image is not
mapped corresponds to the collision-free paths. The
collision-free path defined here is a subset of PS that
is defined by the specific base curves. The process of
creating an obstacle image in parameter space is
described in the following sections.

Another attractive feature concerning the use of an
algebraic curve for path planning is that the

complexity of a path can be controlled by limiting the
number of control points or the order of the base curve.
In other words, PS can be constructed with base
curves of increasing complexity. Once a class of PS is
filled with object images, it indicates that the
refinement of PS or a search with additional
connection points or higher order base curve is
required.

3. PATH SPACE AND QUADRATIC WORK-
SPACE DEFINITION

3.1. Direct path, PS;, and linear parametric curve

Here a direct path that belongs to a special class of
path space, PS;, connecting two points, S (start point)
and G (goal point) is represented by a parametric
curve. The path in Fig. 3 is expressed as follows:

rs)=(G-S¥s+S. (4)

S and G represent the start and the goal points. As
the value of s increases from s= 0 to s=1, a point r
moves from point 8 (=r(s)s=), to point G (=r(s)s=). It
is noted that the directional property of parametric
curve allows one to express the intersection of two
line segments in simple terms. If they intersect, the
resulting parameter values are within the defining
range of two line segments. An intersection check
between the polygonal edge of an obstacle and line
segment SG should be carried out for all edges of the
obstacle to determine if line segment SG intersects the
object. In Fig. 3, two edges of obstacle OBI intersect
with line segment SG resulting in an interference
range of sto be s; <s < s,

Calculation of intersection between the line
segment SG and an edge P;P; of an obstacle can be
performed by equating the parametric equations for
line SG and line P;P;, and solving for parameter s. Let
r(s) represent line SG and q(t) represent an obstacle
edge PP, then the intersection can be determined by
the following equation.

(G-8)s+8§=(P,~ Py +P, (s)

From (5), the parameters s and t can be obtained by
eliminating the other parameter. After substituting
coordinate values for each point, the following
equations for s and t are obtained.

5= ‘"Pz'y)_(Piy—Sy)(ij_Pix)
(G, - S XP,

(6)
~ P (G, - S, XPy - Py)

(G = S, XS, - By)~(Gy = 8,)(8, — By)

t= (7
(Gx _Sx)(Pjy —])iy)__(Gy —_Sy)(ij _Rx)

The line segment SG intersects the edge P;P; if
0<s<1 and 0<t<1, otherwise no intersections occur.
There is an exception when the denominator vanishes
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Fig. 4. Construction of quadratic curve (Bézier curve
of order two).

from (6) and (7). This condition occurs when line
segments SG and P;P; are in parallel. It can be proven
that by setting the denominator of the above (6) or (7)
as nil and rearranging it, the following equation can be
obtained.

(Gx_Sx) :(P] _])ix)
G, =5,) (By-h)

®

This is just the slope of line SG and the edge P;P;.
Hence, calculation should proceed first with checking
the ratio of denominator to numerator of (6) and (7) to
prevent overflow. If both ratios are greater than one,
i.e. numerator > denominator, calculation for s and t is
not necessary since intersection between SG and P;P;
does not occur. The calculation for the remaining
edges of the obstacle can stop as soon as an
intersection of an edge of an obstacle with SG is
confirmed. This process of interference check should
be carried out for all obstacles including actual
workspace boundary.

Obstacles in the workspace can be categorized into
3 groups, obstacles intersecting line SG, obstacles
above line SG, and obstacles below line SG. In case
where there is no intersection between the line SG and
an obstacle, as obstacle OB2 in Fig. 3, an additional
calculation is necessary to determine on which side it
is located. This does not require a precise value but
requires a relative value for comparison purposes. One
of the simplest yet fastest methods without involving
trigonometric functions is to calculate the determinant
given by (9).

Sx Gx Pix
4=1S, G, B, ®)
1 1 1

Note in fact that (9) gives twice the area of triangle

SGP;, and the order of vertex determines the sign of A.

(9) indicates whether a vertex point, P;, of an obstacle
is located above, below, or on the line SG. For

instance, all edges of an obstacle OB2 from Fig. 3 do
not interfere with line segment SG, and the location of
OB2 can be determined by calculating the sign of (9)
after substituting any one of its vertex points for P;.
There are three cases that arise:
(i) A > 0, when S, G, and P; are arranged in a
anti-clock wise direction (OB3 of Fig. 3),
(ii) A < 0, when S, G, and P; are arranged in a
clockwise direction (OB2 of Fig. 3),

(iii) A = 0, when S, G, and P; are collinear.

This calculation should be done for obstacles that
do not interfere with the line SG. This categorization
reduces calculation, in case when the direct path
interferes with obstacles, which will become apparent
in the next section.

3.2. Application of Bernstein-Bézier curve for path
planning

In this paper, a quadratic curve that belongs to the
Bernstein-Bézier curve family is used as a base curve
of the path. Fig. 4 shows the Bernstein-Bézier curve of
order 2, in which the start point, S, and the goal point,
G, correspond to the end vertices of the curve. The
remaining point controls the shape of the path that can
be used to map the obstacle interference in PS. Path
planning using a higher order curve requires a
multiple number of control points, which lead to a
higher dimensional space of PS.

A typical quadratic parametric curve defined by
three vertices, one for the start point, S, another for the
goal point, G, and the other for control point, Q, is the
Bézier curve of order two. A general Bézier curve of
order n, defined by n+1 vertices, can be expressed as
follows:

o n! k n—k
R(s) = > ————s*(1-5)"*R,, (10)
ké)k!(n—k)! ¢

where Ry denotes the k-th vertex. Notice that the
vertex numbering starts from 0 and ends with n.
Bézier extended the idea of the approximation of a
function to the approximation of a polygon, in which
ntl vertices of a polygon are approximated via the
Bernstein basis. Hence it is also called a Bernstein-
Bézier polynomial curve. When n=2, the Bézier curve
is a parabola and it approximates a triangle formed by
three vertices, see Fig. 4.

R(s)= (l—s)2 Ry +2s(1-s) R + s°R,

(11)
=(Ry 2R +Ry)s* +2(R —Ry)s + Ry

(11) can be derived geometrically. The valid
interval of the parameter s is 0<s<l where s=0
corresponds to point Ry and s=1 corresponds to point
R;. One should note that in Fig. 1 the lines RgR; and
R;R, are tangents to the curve at points Ry and R,
respectively. The location of vertex Ry determines the
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Fig. 5. Construction of quadratic workspace and
bundle of parametric parabolas.

shape of the parabola.

3.3. Workspace determination for quadratic path

In this section, the formulation of the quadratic
curve including the determination of parameter ranges
is described. Fig. 5 shows a hypothetical workspace
specified by a circular quadratic workspace (QWS) a
centre, C, a start point, S, and a goal point, G.

R(s) = (S-2Q+G)s* +2(Q~-S)s+ S (12)

The control point Q is set in polar coordinates
defined by two parameters, 6 and p. The parameter p
defines the radial distance of the control point from
the centre and exhibits a bundle of parabolas along the
line CQyax. The parameter 6, which defines families
of parabolas along a circumferential direction, sets the
rotation angle of CQuay. The curve R(s)* is a Bézier
curve defined by triangle SQu.G and indicates the
extreme boundary of the work space QWS. The range
of 8 spans from 0° to 360° and the range of p spans
from 0 t0 ppax, Where ppax corresponds to the extreme
control point, Qumax. Thus, a circular workspace in
Euclidean space is mapped into a rectangular area in
parameter space (0, p). Because there are two
independent parameters involved in the creation of PS,
the resulting PS belongs to PS,.

The extreme control point Qu.x defines the
boundary of the workspace QWS. When control point,
Q. coincides with the centre point, C, the parabola
degenerates to the line SG, and accordingly p is set to
zero. The QWS shown by the circle in Fig. 5 should
enclose the AWS (Actual Work Space). The QWS
can be a shape other than a circle, however for the
simplicity of calculation, a circular shape is chosen
here. Any defining vertex of the AWS boundary

\ %Qmax(ev pmax)
DA

QB

Fig. 6. Categorization of obstacles.

should be inside of the QWS. Calculation of py.x of
parabola, Qu.y, is rather complicated since it requires
calculating the contact of both the parabola and the
circle (both curves are in second order). Here an
approximation for circular QWS is used instead. Note
from (12), when s=0.5 the parabola passes through
bisection point of line segment CQ,., denoted by R*.
In other words, an approximation to the Q.x can be
obtained from R* of QWS. This approximation
creates the QWS*, and that is slightly larger than that
for the circular QWS, see Fig. 5.

The circular boundary QWS* defined by R* should
contain the AWS boundary vertices. This is in fact
finding the vertex of the AWS boundary that is
farthest away from the centre, for example Wj of Fig.
5. Qmax can be obtained using (12) with s=0.5 and
R=R*.

Qmax_czz(R*_C), (13)

where C=(8+G)/2. (13) indicates that the radius of the
circle traced by Qmax is twice the radius of the circle
generated by R*.

So far the extreme radius of QWS* is discussed.
Having calculated [Qumax -C|, the origin of the local
coordinate system can be set at C, and the location of
Quax depending on the value of 8 can be computed as
follows:

2R -C

(Gy — Sy )cos@
Qmax,x = |G—S|

~(G, -5, )sing+C,

MR C (14)

Qmax’y:|G—S|

(Gy —Sy)cosé?
—(Gy =Sy )sind+C,

Now that the location of Quax can be determined
for a given value of 6, the bundle of parabolas can be
set along the line CQyay.

Q=(Omax -C)p+C (15)

(15) can be inserted into (12) to get a parabolic
locus that is defined by parameter s.
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Fig. 7. Interference between a bundle of parabolas
and obstacles.

4. CALCULATION OF INTERFERENCE
BETWEEN PARABOL AND OBSTACLES

4.1. Categorization of obstacles

Actual calculation of obstacle interference can be
delayed until categorization of the obstacle is done.
Fig. 6 shows classification of obstacles relative to the
triangle SQua.xG. The reason for doing this is to
reduce the calculations involved in the interference
check.

From Fig. 6, the number of cases can be observed
as follows.

i) Case 1, obstacle is located completely outside of
triangle SQumaxG, so no interference check is
necessary.

ii) Case 2, obstacle is located completely inside of
triangle SQuaxG, which may result in two clear
ranges of p.

ii1) Case 3, obstacle intersects line segment SG, lower
bound of clear range of p is obtained.

iv) Case 4, obstacle intersects line segment SQpay oOr
QuaxG, upper bound of clear range of p is
obtained.

v) Case 5, obstacle intersects both line segment SG
and SQuax or QumaxG, therefore no interference
check is necessary. In this case, a bundle of
parabolas is completely blocked by the obstacle.

vi) Case 6, obstacle intersects both line segments
SOmax and Qua.G, and the obstacle may be
completely located outside of the parabola. There
is still a chance that the obstacle may intersect the
parabola, and the upper bound of the clear range of
p is obtained.

The categorization can be done using line
intersection between triangle SQu.,G and obstacle
edges. Calculation of the intersection between the line
segment SG and an edge PiP; of an obstacle can be

done by equating the parametric equations for line SG
and line P;P;, and solving for parameters. The
calculation is identical to the one presented in Section
3.1 and it can be used with (5), (6) and (7). The line
segment SG intersects the edge P;P; if both parameter
s and t are within 0<s<l and 0<t<l, otherwise no
intersection occurs. There is an exception when the
denominator vanishes from (6) and (7). This condition
occurs when line segments SG and P;P; are in parallel.
(8) shows that the slope of the line SG and the edge
P;P; are the same. Hence calculation should proceed
with checking the ratio of the denominator to
numerators of (6) and (7). If both the ratio are greater
than one, i.e. numerator > denominator, calculations
for s and t are not necessary since an intersection
between SG and P;P; is impossible. The calculation
for the remaining edges of the obstacle may stop as
soon as the intersection of an edge of an obstacle with
SG occurs. This interference checking process should
be performed for all obstacles, and for line segments
SQuuax and QumaxG to obtain a complete categorization
of an obstacle.

4.2. Interference of obstacles and parabola

Fig. 7 shows an obstacle and a bundle of parabolas.
The expression for a bundle of parabolas can be
obtained by substituting (15) into (12).

R(p,s)= Z(C_Qmax)ps2 +Z(Qmax —C)ps
+(G-8)s+S (16)

It is clear that obstacles limit the valid range of
parameter p, see Fig. 7. It is noted that two basic
operations are necessary for the calculation of obstacle
interference. One is a contact with a vertex of the
obstacle and the other is a contact with an edge of the
obstacle. With these basic operations, the interference
range of parameter p can be obtained. For instance, in
Fig. 7, vertex P3 of OB1 is in contact with parabola
Ri(s), and edge P,P; is in contact with parabola Ry(s).
Clearly, the parabolas in the range of p,;<p<p;
intersect with obstacle OB1. Likewise, obstacle OB2
creates an interference range of parameter 0<p<p;. It
is important to note that p; is the largest parameter
value among the vertices and edge contact of OB2,
and p; is the largest parameter value among the
vertices and edge contact of OB1. Additionally, it
must be decided from among which of the intervals
0<p<p1, p1<p<p> and p,<p=l, the parabolas intersect
the obstacle. The categorization of obstacles treated
above is used to clear the ambiguity of interference
range.

The contact between the vertex of an obstacle and a
parabola can be computed by substituting vertex point,
(P, Py), into the left-hand side of (16). From the two
simultaneous equations, the parameter p can be
eliminated and the remaining unknown parameter s
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and parabolas passing through S and G.

can be obtained as follows.

o= (Cx _Qmax,x)(Py 'Sy)v(cy ‘Qmax,y)(Px _Sx) (17)
(Cx _Qmax,x)(Gy _Sy) _(Cy _Qmax,y)(Gx _Sx)

Parameter s represents a point along the parabola.
The other parameter p can now be obtained by
substituting (17) into (16) provided that the
denominator of (17) does not vanish.

_ (P-8)+(S-G)s
P 25(1_5)(Qmax —C)

The parameter p can be calculated by substituting
either x or y values and the parameter s from (17).
When the parameter s is either zero or one, an
exception occurs from (18) indicating either
indeterminate (s=0) or infinite (s=1). If s=0, the vertex
coincides with the start point, S, and if s=1, the vertex
coincides with the goal point, G. Both cases are
invalid, and could not occur in reality. From (17) and
(18), if both the solutions of s and p are within the
range of 0<s<] and 0<p<1, contact between vertex P
and parabola R(s) occurs.

Fig. 8 shows the contact between a line and a
bundle of parabolas where two parabolas can contact
with the given line and at the same time pass through
the start point and the goal point. This contact
condition between an obstacle edge and a parabola is
used to obtain the parametric values of t, for the edge,
and p and s for the parabola from (19).

(Pi-P)=P = 2(C-Onux)ps®
+2(Qmax —C)ps+(G _S)S+S

The parameter t describing the obstacle edge can be
eliminated first from (19) to obtain the following (20).

(18)

(19)

Aps® +(-Ap+B)s+C=0, (20)

where
A= 2(CX'Qmax.x)(Pj,y'Pi,y) = 2(Cy'Qmax,y)(Pj,x'Pi,x)7
B= (Gx'sx)(Pj,y'Pi,y) = (Gy'sy)(Pj,x'Pi,x)a and
C = (SxtPix)(Pjy-Piy) - (Sy+Pi (P «-P; ).

There are two different roots of p that satisfy (20)
and they are also shown graphically in Fig. 5. It is not
readily recognizable from the equation; however it can
be proved by using the fact that the paraboia is just in
contact with the edge of the obstacle defined by P; and
P;. Thus the discriminant of (20) should vanish.

A*p? —=24(B+2C)p+B* =0 21

(21) may have two different solutions for p as
shown in Fig. 5 in which R; and R; are the
corresponding curves.

P =1X{B+2C—21/(B+C)C}

(22)
p =l{B+ZC+2 (B+C)C)
>4

Fig. 5 reveals that the root p; is always smaller than
the root p;. The root p; is the possible valid solution
due to the fact that the parameter value s at contact
point for p; is always outside the valid range, i.e.
either s<0 or s>1.

A number of exceptions can occur during the
evaluation of p. From (22), if A=0 an exception occurs
and it is the instance when the edge is in parallel with
the line CQuax. A simple and general method to avoid
this exception is to compare the denominator with the
numerator of (22) before evaluating the division. If the
absolute value of the numerator is smaller than the
absolute value of the denominator, p is in the range of
-1<p<1 and the division should be evaluated,
otherwise the evaluation can be omitted. Another
exception occurs when the discriminant of (21) is
negative, in which an imaginary solution transpires.
This exception, (B+C)C<0, corresponds to either
(B+C)<0 and C>0 or (B+C)>0 and C<0. This case
arises when the line describing the edge under
consideration intersects the line segment SG. Such
cases can be avoided by computing the discriminant
of (21). A negative discriminant value indicates no
further evaluation is necessary and the calculation of
the vertex contact given by (17) and (18) is necessary.

Substituting the valid result, p,, from (22) into (21),
the unknown parameter s is obtained as follows.

C+\(B+C)C
5= : (23)
B+2C+2,{(B+C)C

where A,B and C are defined in (20). The parameter t
can now be calculated from (19) if the denominator
does not vanish. If the values of p, s and t are all
within the valid range, i.e. 0<p<1, 0<s<1, and 0<t<1, a
contact occurs.

The exception to (23) takes place when the edge is
on the line SG, in which the coefficient B and C
vanish and (23) becomes indeterminate. This
exception results in either p;=0 or p,=0. For such
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(b) Images of obstacle in PS.
Fig. 9. QWS GM and construction of PS.

cases, the contact between vertices of the edge and the
line segment SG is used to obtain the intersection
point.

Obstacles in the workspace limit the range of
parameter p. Since the calculation of the intersection
between an obstacle and bundle of parabolas blocks
the range of parameter p, the final blocked range of p
is the union of all blocked ranges of p caused by all
obstacles.

5. SIMULATION OF QWS GM ALGORITHM
AND COMPARISON WITH OTHER GM

Fig. 9 shows a typical case of QWS GM in which
the two obstacles OB1 and OB2 are mapped into PS
images with different hatching patterns. The QWS
GM described in the previous section does not impose
any restrictions on the shape of an obstacle. For
example, a concave obstacle such as OB2 in Fig. 9 is
a valid obstacle of geometry. The bundle of parabolas,
Ry(s) through R*(s), shown in Fig. 6(a) corresponds
to points p; through pyax, respectively, on the dotted
line indicated by 6*. The resulting interference ranges
of p for obstacles OBl and OB2 are 0<p<p; and
P2<p<ps, respectively. Thus, the clear ranges of p are
P1<p<p, and p;<p<l. The obstacle OB2 maps into a
horseshoe shaped image, while OB1 maps into an

image occupying the bottom part around 6=0° and the
360° area.

The number of obstacles that intersect with
parabolas varies as the angular parameter of the
control point of the parabola changes. In the
implementation of the QWS GM algorithm, the
routine for finding the valid range of p should cope
with any number of obstacles. Such a process creates
images in the path space as shown in Fig. 9(b). In the
Appendix, a procedural description of the QWS GM
algorithm in which the details of categorization of the
obstacle, the interference computation and the process
flow can be observed.

With some additional constraints, the entire
geometric mapping for (0<6<360 may be
unnecessary. For instance, the values of 8 near 0° and
180° produce sharp parabolas passing nearby line
segment SG, and the range of angular parameters can
be set up so that those intervals can be skipped. One
of the most important benefits of constructing PS is
that it allows finding the safest path. In Fig. 9(b),
there are three areas, A;, A;, andAs, that are not
occupied by obstacle images. The centre of the
inscribing circles, C;, C,, and C;, produces a safer
path than other points from that area. Because circle
C; is the largest, the centre point of Cs is the safest
path. Since the path space is not a metric space, the
safest path considered so far may not correspond to
the true safest path. However, it would give an
approximation to the true safest path. A rather simple
way of finding the pseudo safest path is as follows.
The clear ranges of p for each different value of 6 are
compared to find the one that has the widest range.
The mid-point of that parameter range is selected as
the pseudo safest path. This is only an approximation
to the safest path, since the comparison is made in
the 6 -direction only.

A number of GM simulations were performed and
shown in Figs. 10~15. Adding an obstacle increases
run time, and the run time varies as the location of the
start or the goal point changes because the obstacles
interference calculation demands a varying degree of
computational load. The simulations are carried out on
three different systems; i) Windows 2000 on
PentiumlV/2.53GHz with 1GB DDR-SDRAM system,
ii) Windows ME on PentiumlIl (Celeron)/533MHz
with 256SDRAM system, and iii) Win 95 DOS Mode
on Pentium/90MHz with 16MB SDRAM system with
the GM resolution of AG = 3° and 15°, and results of
AB = 3° are presented in Figs. 10~15. The measure of
pure computational time for Figs. 10~15 are given in
Table 1. The computational time for AG = 3° is not
exactly five times that of A@ = 15°because obstacle
categorization and  corresponding interference
calculations do not increase proportionally.

Case 1 is shown in Fig. 10 and contains 6 obstacles,
where the upper path and lower path are selected from
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Table 1. Summary of QWS GM simulation results.

(unit: sec.)
Ref. | Pentiumivsz.s3g | Pentumill b imooMHz
Fig. Hz system (Celeron)/533 system
MHz system
AB=3° | AG=15°] AB=3°| AB=15°| AB=3° | AB=15°
Fig. 10 | 0.00115 | 0.00025 | 0.0041 | 0.0008 | 0.12087 | 0.02197
(case 1) | 6 0 2 8 9 8
Fig. 11 | 0.00081 | 0.00018 | 0.0029 | 0.0006 | 0.08736 | 0.01648
(case 2) | 2 7 7 0 3 4
Fig. 12 | 0.00096 | 0.00021 | 0.0034 | 0.0007 | 0.10214 | 0.02087
(case 3) | 8 8 6 7 3 9
Fig. 13 | 000123 | 0.00026 | 0.0044 | 0.0009 | 0.13186 | 0.02692
(case4) | 4 6 0 4 8 3
Fig. 14 | 000112 | 0.00025 | 0.0040 | 0.0008 | 0.11901 | 0.02197
(case 5) | 5 0 1 7 1 8
Fig. 15 | 0.00148 | 0.00031 | 0.0052 | 0.0011 | 0.15703 | 0.03236
(case 6) | 5 2 7 0 3 3

the centre point of the circle in FS. Case 2 contains 4
obstacles, and case 3 contains 5 obstacles in which
OBS is added to case 2. Cases 4 and 5 contain 6 ob-
stacles in which OB6 is added to case 3, and are ex-
actly the same as that of case 1 except that the goal
point location is moved to another place. Case 6 con-
tains 8 obstacles in which OB7 and OBS are added to
case 1.

6. CONCLUSION AND DISCUSSIONS

The path planning method introduced in this paper
is an attempt to develop an alternative path planning
strategy to overcome the shortcomings of many of the
current path planning methods. The development of
the path space concept and geometry mapping in this
paper is new in the field of robot path planning re-
search. There are an infinite number of paths connect-
ing the start to the goal, and they are defined to be a
path space. The path space consists of path space that
does not interfere with obstacles and path space that
does interfere with obstacles. The generalized path
space is the summation of all path space in which each
path space is based on a different base curve. Hence,
the generalized path space is a hierarchical structure
that consists of path spaces based on a simple curve to
a complicated curve. In this series of papers, two-
dimensional path space, PS,, was investigated.

In this paper, the concept of PS is established and a
quadratic workspace geometry mapping (QWS GM)
was developed. The QWS GM was implemented for
the simulation of the same robot workspace environ-
ment. The categorization of obstacles and the interfer-
ence calculations are all expressed in closed form
equations and no iterative calculations are involved.
The simulation confirmed the effectiveness of the
method.

Although the method introduced in this paper is ef-
ficient for the scattered obstacle environment, it is not
good at solving the path-planning problem for the
maze-like environment. For such environment, a
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higher-order based curve is required in the form of a
single high order algebraic curve or iterative applica-
tion of low order curve. Application of single high-
order based curve for geometry mapping may not be
desirable, because it will need an iterative solution for
the contact and intersection calculation. Although
those curves will give higher continuity in the result-
ing path, C* continuity may be enough for most appli-
cations. Hence, iteratively applying low order curve
for the given interval will be an effective and simple
method for the problem. In this regard, the GMs de-
veloped in this paper are fundamental in that they can
be used in sub-intervals of the original interval.

The path space concept converts the problem of
collision-free path planning in Euclidean space into
the selection of a point in path space. Selecting a point
from a given space is an inherently simpler problem
than creating a path in a space. The path space also
provides information on free space. It can be used for
the safer path generation and can also be used for post
processing of the final path to give proper continuity,
etc.

Further investigation and development in the gener-
alization of the method for higher order path space is
the next research step. Especially in the case of the
higher dimensional path space, the post processing of
final path for proper continuity is yet another area of
research that requires attention. And the integration of
the GM algorithm with the configuration space or the
object modeling is another area of research needed to
be performed for the generalization of the method.
Once these fundamental aspects are established, the
use of the GM method for path planning and obstacle
avoidance in a dynamic environment may require fur-
ther research.
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