• Title/Summary/Keyword: Curve phase

Search Result 780, Processing Time 0.026 seconds

Evaluation of Mechanical Properties by Using Instrumented Indentation Testing for Resistance Spot Welds (비파괴 계장화 압입시험을 이용한 저항 점용접부 물성 평가)

  • Choi, Chul-Young;Kim, Jun-Ki;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Yeong-Do
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.

Dynamic Model for Open Innovation Network (개방형 혁신 네트워크의 동태적 모형)

  • Park, Chulsoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.1
    • /
    • pp.5-19
    • /
    • 2015
  • Literatures on open innovation have two major limitations. First, either on a firm level or on an industry level did they analyze the open innovation issues. The results of a firm's innovation can be diffused through the whole network and the firm can learn back from the network knowledge. Prior literatures did not consider the feedback loop among firms and network in which the firms are involved. Second, most open innovation research had a static perspective on firm's innovation performance. Since the diffusion, spill-over and learning among network members are involved over time, the open innovation is intrinsically dynamic. From the dynamic perspective, we can appreciate the fundamental attributes of the open innovation network which involves diverse firms, research institutes, and universities. In order to overcome the limitations, we suggest a dynamic model for open innovation network. We build an agent-based model which consists of heterogeneous firms. The firms are connected through a scale-free network which is formed by preferential attachment. Through the diverse scenario of simulation, we collect massive data on the firm level and analyze them both on firm and industry level. From the analysis, we found that, on industry level, the overall performance of open innovation increases as the internal research capability, absorptive capacity, and learning curve coefficient increase. Noticeably, as the deprecation rate of knowledge increases, the variability of knowledge increases. From the firm level analysis, we found that the industry-level variables had a significant effect on the firm's innovation performance lasting through all the time, whereas the firm-level variables had only on the early phase of innovation.

Position estimation and control of SMA actuators based on electrical resistance measurement

  • Song, Gangbing;Ma, Ning;Lee, Ho-Jun
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.189-200
    • /
    • 2007
  • As a functional material, shape memory alloy (SMA) has attracted much attention and research effort to explore its unique properties and its applications in the past few decades. Some of its properties, in particular the electrical resistance (ER) based self-sensing property of SMA, have not been fully studied. Electrical resistance of an SMA wire varies during its phase transformation. This variation is an inherent property of the SMA wire, although it is highly nonlinear with hysteresis. The relationship between the displacement and the electrical resistance of an SMA wire is deterministic and repeatable to some degree, therefore enabling the self-sensing ability of the SMA. The potential of this self-sensing ability has not received sufficient exploration so far, and even the previous studies in literature lack generality. This paper concerns the utilization of the self-sensing property of a spring-biased Nickel-Titanium (Nitinol) SMA actuator for two applications: ER feedback position control of an SMA actuator without a position sensor, and estimation of the opening of a SMA actuated valve. The use of the self-sensing property eliminates the need for a position sensor, therefore reducing the cost and size of an SMA actuator assembly. Two experimental apparatuses are fabricated to facilitate the two proposed applications, respectively. Based on open-loop testing results, the curve fitting technique is used to represent the nonlinear relationships between the displacement and the electrical resistance of the two SMA wire actuators. Using the mathematical models of the two SMA actuators, respectively, a proportional plus derivative controller is designed for control of the SMA wire actuator using only electrical resistance feedback. Consequently, the opening of the SMA actuated valve can be estimated without using an extra sensor.

Superconducting Properties and Phase Formation of MgB2 Superconductors Prepared by the Solid State Reaction Method using MgB4 and Mg Powder (MgB4와 Mg 분말을 원료로 사용하여 고상반응법으로 제조한 MgB2 초전도체의 상생성과 초전도 특성)

  • Jeong, Hyeondeok;Kim, Chan-Joong;Jun, Byung-Hyuk;Kim, Seolhyang;Park, Hai-Woong
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.344-349
    • /
    • 2015
  • $MgB_2$ bulk superconductors are synthesized by the solid state reaction of ($MgB_4$+xMg) precursors with excessive Mg compositions (x=1.0, 1.4, 2.0 and 2.4). The $MgB_4$ precursors are synthesized using (Mg+B) powders. The secondary phases ($MgB_4$ and MgO) present in the synthesized $MgB_4$ are removed by $HNO_3$ leaching. It is found that the formation reaction of $MgB_2$ is accelerated when Mg excessive compositions are used. The magnetization curves of $Mg_1+_xB_2$ samples show that the transition from the normal state to the superconducting state of the Mg excessive samples with x=0.5 and x=0.7 are sharper than that of $MgB_2$. The highest $J_c-B$ curve at 5 K and 20 K is achieved for x=0.5. Further addition of Mg decreases the $J_c$ owing to the formation of more pores in the $MgB_2$ matrix and smaller volume fraction of $MgB_2$.

Bioequivalence of Mepiril Tablet to Amaryl Tablet (Glimepiride 2 mg) by Liquid Chromatography/Electrospray Tandem Mass Spectrometry

  • Lee, Heon-Woo;Cho, Sung-Hee;Park, Wan-Su;Im, Ho-Taek;Rew, Jae-Hwan;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.287-293
    • /
    • 2005
  • The purpose of the present study was to evaluate the bioequivalence of two glimepiride tablets, Amaryl tablet (Handok & Aventis Korea, reference drug) and Mepiril tablet (Myungmoon Pharm. Co., Ltd., Korea, test drug), according to the guidelines of Korea Food and Drug Administration (KFDA). After adding an internal standard (glibenclamide) to human plasma, plasma samples were extracted using 1mL of methyl tertiary butyl ether. Compounds extracted were analyzed by reverse-phase HPLC with multiple reaction monitoring (MRM) mode analyte detection. This method for determination glimepiride proved accurate and reproducible, with a limit of quantitation of 2 ng/mL in human plasma. Twenty-four healthy male Korean volunteers received each medicine at the glimepiride dose of 2 mg in a $2{\times}2$ crossover study. There was a one-week washout period between the doses. Plasma concentrations of glimepiride were monitored by a LC-MS/MS for over a period of 12 hr after the administration. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 12 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for Amaryl/Mepiril were log 0.9583-log 1.1357 and log 1.0570-log 1.2376, respectively. These values were within the acceptable bioequivalence intervals of log 0.80-log 1.25. Taken together, our study demonstrated the bioequivalence of Amaryl and Mepiril with respect to the rate and extent of absorption.

Serum miR-19a Predicts Resistance to FOLFOX Chemotherapy in Advanced Colorectal Cancer Cases

  • Chen, Qi;Xia, Hong-Wei;Ge, Xiao-Jun;Zhang, Yu-Chen;Tang, Qiu-Lin;Bi, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7421-7426
    • /
    • 2013
  • Background: Colorectal cancer is the fourth most common cancer worldwide and the second leading cause of cancer-related death. FOLFOX is the most common regimen used in the first-line chemotherapy in advanced colorectal cancer, but only half of the patients respond to this regimen and we have almost no clue in predicting resistance in such first-line application. Methods: To explore the potential molecular biomarkers predicting the resistance of FOLFOX regimen as the first-line treatment in advanced colorectal cancer, we screened microRNAs in serum samples from drug-responsive and drug-resistant patients by microarrays. Then differential microRNA expression was further validated in an independent population by reverse transcription and quantitative real-time PCR. Results: 62 microRNAs expressing differentially with fold-change >2 were screened out by microarray analysis. Among them, 5 (miR-221, miR-222, miR-122, miR-19a, miR-144) were chosen for further validation in an independent population (N=72). Our results indicated serum miR-19a to be significantly up-regulated in resistance-phase serum (p=0.009). The ROC curve analysis showed that the sensitivity of serum miR-19a to discriminate the resistant patients from the response ones was 66.7%, and the specificity was 63.9% when the AUC was 0.679. We additionally observed serum miR-19a had a complementary value for cancer embryonic antigen (CEA). Stratified analysis further revealed that serum miR-19a predicted both intrinsic and acquired drug resistance. Conclusions: Our findings confirmed aberrant expression of serum miR-19a in FOLFOX chemotherapy resistance patients, suggesting serum miR-19a could be a potential molecular biomarker for predicting and monitoring resistance to first-line FOLFOX chemotherapy regimens in advanced colorectal cancer patients.

High Temperature Compressive Properties of Tungsten Activated Sintered Pare Prepared by 0.4 wt.% Ni-doped Tungsten Powder Compacts (0.4 wt% Ni을 첨가한 W 활성소결체의 고온압축 특성 연구)

  • 이승익;김순욱;박영삼;문인형
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.307-314
    • /
    • 2002
  • The high temperature deformation behavior of the activated sintered W powder compacts was investigated. The W compact showed the relative density of 94% with the average W grain size of $23\mutextrm{m}$ by activated sintering at $1400^{\circ}C$ for 1 hour. Compression tests were carried out in the temperature range of $900-1100^{\circ}C$ at the strain rate range of $10^{0}$/sec - $10^{-3}$/sec. True stress-strain curve and microstructure exhibited the grain boundary brittleness which was dependent on the compression test temperature. The activated sintered W compact showed that the maximum stress as well as the strain at the maximum stress was abruptly decreased as the test temperature increase from $900^{\circ}C$ to 1000 and $1100^{\circ}C$ regardless of the strain rate. The discrepancy of the microstructure in the specimen center was obviously observed with the increase of the test temperature. After compression test at $900^{\circ}C$ the W grain was severely deformed normally against the compression axis. However, after compression test at $1000^{\circ}C$ and $1100^{\circ}C$ the W grain was not deformed, but the microcrack was formed in the W grain boundary. The Ni-rich second phase segregated along the W grain boundary could be partly unstable over $900^{\circ}C$ and affect the poor mechanical property of the activated sintered W compact.

Participation of $K_{ATP}$ Channels in the Antinociceptive Effect of Pregabalin in Rat Formalin Test

  • Kweon, Tae-Dong;Kim, Ji-Young;Kwon, Il-Won;Choi, Jong-Bum;Lee, Youn-Woo
    • The Korean Journal of Pain
    • /
    • v.24 no.3
    • /
    • pp.131-136
    • /
    • 2011
  • Background: Pregabalin is an anticonvulsant and analgesic agent that interacts selectively with the voltage-sensitive-$Ca^{2+}$-channel alpha-2-delta subunit. The aim of this study was to evaluate whether the analgesic action of intrathecal (IT) pregabalin is associated with KATP channels in the rat formalin test. Methods: IT PE-10 catheters were implanted in male Sprague-Dawley rats (250.300 g) under inhalation anesthesia using enflurane. Nociceptive behavior was defined as the number of hind paw flinches during 60 min after formalin injection. Ten min before formalin injection, IT drug treatments were divided into 3 groups: normal saline (NS) $20\;{\mu}l$ (CON group); pregabalin 0.3, 1, 3 and $10\;{\mu}g$ in NS $10\;{\mu}l$ (PGB group); glibenclamide $100\;{\mu}g$ in DMSO $5\;{\mu}l$ with pregabalin 0.3, 1, 3 and $10\;{\mu}g$ in NS $5\;{\mu}l$ (GBC group). All the drugs were flushed with NS $10\;{\mu}l$. Immunohistochemistry for the $K_{ATP}$ channel was done with a different set of rats divided into naive, NS and PGB groups. Results: IT pregabalin dose-dependently decreased the flinching number only in phase 2 of formalin test. The log dose response curve of the GBC group shifted to the right with respect to that of the PGB group. Immunohistochemistry for the $K_{ATP}$ channel expression on the spinal cord dorsal horn showed no difference among the groups 1 hr after the formalin test. Conclusions: The antinociceptive effect of pregabalin in the rat formalin test was associated with the activation of the $K_{ATP}$ channel. However, pregabalin did not induce $K_{ATP}$ channel expression in the spinal cord dorsal horn.

Bioequivalence Evaluation of Two brands of Cetirizine HCl 10 mg Tablets (Zyrix and Zyrtec) in Healthy Male Volunteers

  • Im, Ho-Taek;Won, Jong-Hoen;Cho, Sung-Hee;Lee, Heon-Woo;Park, Wan-Su;Rew, Jae-Hwan;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.5
    • /
    • pp.355-360
    • /
    • 2005
  • The purpose of the present study was to evaluate the bioequivalence of two cetirizine HCl tablets, Zyrtec tablet (UCB Pharm. Co., Ltd. Korea, reference product) and Zyrix tablet (Kukje Pharm. Co., Ltd., Korea, test product), according to the guidelines of Korea Food and Drug Administration (KFDA). After adding an internal standard (diazepam), plasma samples were extracted using 1 mL of dichloromethane. Compounds extracted were analyzed by reverse-phase HPLC with ultra-violet detector. This method for determination cetirizine is proved accurate and reproducible with a limit of quantitation of 10 ng/mL in male plasma. Twenty-four healthy male Korean volunteers received each medicine at the cetirizine HCl dose of 10 mg in a $2{\times}2$ crossover study. There was a one-week wash out period between the doses. Plasma concentrations of cetirizine were monitored for over a period of 24 hr after the administration. AUC (the area under the plasma concentration-time curve) was calculated by the linear trapezoidal rule. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed AUC and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals for the log transformed data were acceptable range of log 0.8 to log 1.25 $(e.g.,\;log\;0.93-log\;1.08\;for\;AUC_{0-t},\;log\;0.91-log\;1.08\;for\;AUC_{0-{\infty}}\;and\;log\;1.01-log\;1.11\;for\;C_{max})$. The major parameters, AUC and $C_{max}$ met the criteria of KFDA for bioequivalence indicating that Zyrix tablet is bioequivalent to Zyrtec tablet.

Bioequivalence Assessment of Acephyll® Capsule to Surfolase® Capsule (Acebrophylline HCl 100 mg) by Liquid Chromatography Tandem Mass Spectrometry

  • Nam, Kyung-Don;Seo, Ji-Hyung;Yim, Sung-Vin;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.309-315
    • /
    • 2011
  • A sensitive and specific liquid chromatographic method coupled with tandem mass spectrometry (LC-MS/MS) was developed for the analysis of ambroxol (active moiety of acebrophylline). After acetonitrile precipitation of proteins from plasma samples, ambroxol and the domperidone (internal standard, IS) were eluted on a C18 column. The isocratic mobile phase was consisted of 10 mM ammonium acetate and methanol (10 : 90, v/v), with flow rate at 0.2 mL/min. A tandem mass spectrometer, as detector, was used for quantitative analysis in positive mode by a multiple reaction monitoring mode to monitor the m/z 379.2${\rightarrow}$264.0 and the m/z 426.2${\rightarrow}$175.1 transitions for ambroxol and the IS, respectively. Twenty four healthy Korean male subjects received two capsules (100 mg ${\times}$ 2) of either the test or the reference formulation of acebrophylline HCl in a 2 ${\times}$ 2 crossover study, this was followed by a 1week washout period between either formulation. $AUC_{0-t}$ (the area under the plasma concentration-time curve) was calculated by the linear trapezoidal rule. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. The 90% confidence intervals for the log transformed data were acceptable range of log 0.8 to log 1.25 (e.g., log 0.8964 - log 0.9910 for $AUC_{0-t}$ log 0.8690 - log 1.0750 for $C_{max}$). The major parameters, $AUC_{0-t}$ and $C_{max}$ met the criteria of Korea Food and Drug Administration for bioequivalence indicating that Acephyll$^{(R)}$ capsule (test) is bioequivalent to Surfolase$^{(R)}$ capsule (reference).