In this study, solute breakthrough curves through the unsaturated zone were predicted using artificial neural network (ANN) by numerical tests and laboratory experiments. In the numerical tests, applicability of ANN model to prediction of breakthrough curves was evaluated using synthetic data generated by HYDRUS-2D. An appropriate strategy of ANN application and input data form were recommended. The ANN model was validated by laboratory experiments comparing with HYDRUS-2D simulations. The results show that the ANN model can be an effective method for forecasting solute breakthrough curves through the unsaturated zone when hydraulic data are available.
Intrusion detection systems (IDSs) are crucial in this overwhelming increase of attacks on the computing infrastructure. It intelligently detects malicious and predicts future attack patterns based on the classification analysis using machine learning and data mining techniques. This paper is devoted to thoroughly evaluate classifier ensembles for IDSs in IEEE 802.11 wireless network. Two ensemble techniques, i.e. voting and stacking are employed to combine the three base classifiers, i.e. decision tree (DT), random forest (RF), and support vector machine (SVM). We use area under ROC curve (AUC) value as a performance metric. Finally, we conduct two statistical significance tests to evaluate the performance differences among classifiers.
A strain energy density function is used to characterize the hyperelasticity of rubber-like materials. Conventional models, such as the Neo-Hookean, Mooney-Rivlin, and Ogden models, are widely used in automotive industries, in which the strain potential is derived from strain invariants or principal stretch ratios. A fitting procedure for experimental data is required to determine material constants for each model. However, due to the complexities of the mathematical expression, these models can only produce an accurate curve fitting in a specified strain range of the material. In this study, a hyperelastic model for Neodymium Butadiene rubber is developed by using the Artificial Neural Network. Comparing the analytical results to those obtained by conventional models revealed that the proposed model shows better agreement for both uniaxial and equibiaxial test data of the rubber.
This study was designed to investigate the mechanical properties of the coating layer on electronic galvanized sheet steel as a part of the ongoing research on the coated steel. Those properties were determined using nano-indentation, the finite element method, and artificial neural networks. First and foremost, the load-displacement curve (the loading-unloading curve) of coatings was derived from a nano-indentation test by CSM (continuous stiffness measurement) and was used to measure the elastic modulus and hardness of the coating layer. The properties derived were applied in FE simulations of a nano-indentation test, and the analytical results were compared with the experimental result. A numerical model for FE simulations was established for the coating layer and the substrate separately. Finally, to determine the mechanical properties of the coating, such as the stress-strain curve, functional equations of loading and unloading curves were introduced and computed using the neural networks method. The results show errors within $5\%$ in comparison with the load-displacement measured by a nano-indentation test.
Highly conductive oxide films of BaRuO$_3$ have been grown heteroepitaxially on (100) LaAlO$_3$ single crystalline substrates by using pulsed laser deposition. The films are c-axis oriented with an in-plane epitaxial relationship of <010><100>BaRuO$_3$ // <110>LaAlO$_3$. Atomic force microscopy (AFM) observation shows that they consist of a fine-arranged network of grains and have a mosaic microstructure. Generally temperature-dependent resistivity shows the transition from metallic curve to semiconductor-metallic twofold curve by the deposition conditions for Ru oxide based materials like SrRuO$_3$, CaRuO$_3$, BaRuO$_3$, etc.. This twofold curve comes from the structural similarity of Ru oxide based materials including BaRuO$_3$. We find that the distance of Ru-Ru bonding in the unit cell of BaRuO$_3$ as well as the grain boundary scattering could be the two important causes of these interesting conductive properties.
본 연구에서 저장탄약 신뢰성평가(ASRP: Ammunition Stockpile Reliability Program)의 데이터 특성을 고려하여 입력변수를 줄이는 정규화기법을 제안함으로써 분류성능의 저하 없이 저장탄약 신뢰성분류 인경신경망모델의 학습 속도향상을 목표로 하였다. 탄약의 성능에 대한 기준은 국방규격(KDS: Korea Defense Specification)과 저장탄약 시험절차서(ASTP: Ammunition Stockpile reliability Test Procedure)에 규정되어 있으며, 평가결과 데이터는 이산형과 연속형 데이터가 복합적으로 구성되어 있다. 이러한 저장탄약 신뢰성평가의 데이터 특성을 고려하여 입력변수는 로트 추정 불량률(estimated lot percent nonconforming) 또는 고장률로 정규화 하였다. 또한 입력변수의 unitary hypercube를 유지하기 위하여 최소-최대 정규화를 2차로 수행하는 2단계 정규화 기법을 제안하였다. 제안된 2단계 정규화 기법은 저장탄약 신뢰성평가 데이터를 이용하여 비교한 결과 최소-최대 정규화와 유사하게 AUC(Area Under the ROC Curve)는 0.95 이상이었으며 학습속도는 학습 데이터 수와 은닉 계층의 노드 수에 따라 1.74 ~ 1.99 배 향상되었다.
Flow duration curve (FDC) can be developed by linking the daily flow data of stream flow monitoring network to 8-day interval flow data of the unit watersheds for the management of Total Maximum Daily Loads. This study investigated the applicable method for the development of long term FDC with the selection of the stream flow reference sites, and suggested the development of the FDC in 4 river basins. Out of 142 unit watersheds in 4 river basins, 107 unit watersheds were shown to estimate daily flow data for the unit watersheds from 2006 to 2010. Short term FDC could be developed in 64 unit watersheds (45%) and long term FDC in 43 unit watersheds (30%), while other 35 unit watersheds (25%) were revealed to have difficulties in the development of FDC itself. Limits in the development of the long term FDC includes no stream monitoring sites in certain unit watersheds, short duration of stream flow data set and missing data by abnormal water level measurements on the stream flow monitoring sites. To improve these limits, it is necessary to install new monitoring sites in the required areas, to keep up continuous monitoring and make normal water level observations on the stream flow monitoring sites, and to build up a special management system to enhance data reliability. The development of long term FDC for the unit watersheds can be established appropriately with the normal and durable measurement on the selected reference sites in the stream flow monitoring network.
Purpose: The aim of the current study was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential usefulness and accuracy of this system for the diagnosis and prediction of periodontally compromised teeth (PCT). Methods: Combining pretrained deep CNN architecture and a self-trained network, periapical radiographic images were used to determine the optimal CNN algorithm and weights. The diagnostic and predictive accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, area under the ROC curve, confusion matrix, and 95% confidence intervals (CIs) were calculated using our deep CNN algorithm, based on a Keras framework in Python. Results: The periapical radiographic dataset was split into training (n=1,044), validation (n=348), and test (n=348) datasets. With the deep learning algorithm, the diagnostic accuracy for PCT was 81.0% for premolars and 76.7% for molars. Using 64 premolars and 64 molars that were clinically diagnosed as severe PCT, the accuracy of predicting extraction was 82.8% (95% CI, 70.1%-91.2%) for premolars and 73.4% (95% CI, 59.9%-84.0%) for molars. Conclusions: We demonstrated that the deep CNN algorithm was useful for assessing the diagnosis and predictability of PCT. Therefore, with further optimization of the PCT dataset and improvements in the algorithm, a computer-aided detection system can be expected to become an effective and efficient method of diagnosing and predicting PCT.
사물인터넷에 대한 관심이 증가하면서 사물인터넷에 적합한 여러 보안 기술들이 연구되고 있다. 특히 디바이스 센서 네트워크 영역에서는 사물인터넷의 특성상 저사양 디바이스의 사용이 증가하고 다양화되었다. 그러나 현재의 인증 기술등의 보안 기술을 저전력 저사양 디바이스에 그대로 적용하기에 어려움이 있고, 이로 인해 보안 위협도 증가하였다. 따라서 사물인터넷의 센서 네트워크 통신상의 엔티티간 인증 프로토콜이 연구되고 있다. 2014년 Porambage 등은 타원곡선 암호 알고리즘에 기반한 센서 네트워크 인증 프로토콜을 제안하여 사물인터넷 환경의 안전성을 향상하고자 하였지만, 취약성이 존재하였다. 이에 따라 본 논문에서는 Porambage 등이 제안한 타원곡선 암호 알고리즘 기반 인증 프로토콜의 취약성을 분석하고, 사물인터넷 환경에서 센서 네트워크에 대한 개선된 인증 프로토콜을 제안한다.
The purpose of this study is to classify urban green space, to assess an imbalance by an administrative district (Dong), and to establish the management zone of urban green spaces for the construction of an environmental city in Changwon. The spatial data of 1:5,000 digital maps, park data in Changwon, land cover by the Ministry of Environment, and IKONOS satellite images from 2003 were used for this analysis. The assessment of the imbalance of urban green spaces was analyzed with the Lorenz curve and Gini's coefficient. The establishment of the management zone was performed by network analysis of GIS. The results of this study are as follows: the urban green spaces were classified as a park green space, a natural green space, and a riparian green space. According to the results of assessment of the imbalance of green spaces, Gini's coefficient was analyzed at higher than 0.4. Thus, the spatial imbalance of urban green spaces in Changwon was evident. The management zones to solve the imbalance were established: "rich zone", "fair zone", "poor zone" and "broken zone". Therefore, the rich and fair zones which have rich green spaces must maintain the good conditions through analysis of the green network and a survey of civic attitudes. The poor and broken zones which have poor green spaces must improve quality and quantity through creation of additional green spaces, construction of an eco-industrial park, and utilization of children's parks and pocket parks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.