• Title/Summary/Keyword: Curve Interpolator

Search Result 24, Processing Time 0.022 seconds

Interpolator Design for Cubic Parallel Manipulator (육면형 병렬공작기계의 보간기 설계)

  • Kim, H.;Hong, D.;Choi, W. C.;Song, J.-B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.492-495
    • /
    • 2001
  • In order to utilize a parallel machine tool for CAM system, the development of adequate interpolator is necessary. This paper presents a quintic B-spline interpolator with algorithm of limiting maximum interpolation error. The favored property of near arc-length parametrization in the curve representation is used in the implementation of the reference command generation. Then, this interpolator is applied to cubic parallel manipulator to show its validity.

  • PDF

Development of the Real-Time 3D NURBS Interpolator for CNC Machines (CNC 공작기계의 실시간 3차원 NURBS 보간기 개발)

  • 홍원표;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1032-1035
    • /
    • 2000
  • Increasing demands on precision machining with computerized numerical control (CNC) machines have necessitated that the tool to move not only position error as small as possible, but also with smoothly varying feedrates in space. This paper presents a new high precision interpolation algorithm for 3-dimensional (3D) Non-Uniform Rational B-Spline (NURBS) curve in the reference-pulse CNC technique. Based on the minimum path error strategy, real-time NURBS interpolator was developed in software and this was implemented with a PC-NC milling machine. The several experimental results have shown that the proposed NURBS interpolator is useful for the high precision machining of complex shapes. It is expected that this algorithm can be applied to the CNC machines for the machining of 3D free-form surfaces.

  • PDF

Cross-coupled Control with a New Contour Error Model (새로운 윤곽 오차 모델을 이용한 상호 결합 제어)

  • 이명훈;손희수;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.341-344
    • /
    • 1997
  • The higher precision in manufacturing field is demanded, the more accurate servo controller is needed. To achieve the high precision, Koren proposed the cross-coupled control (CCC) method. The objective of the CCC is reducing the contour error rather than decreasing the individual axial error. The performance of CCC depends on the contour error model. In this paper we propose a new contour error model which utilizes contour error vector based on parametric curve interpolator. The experimental results show that the new CCC is more accurate than the variable-gain CCC during free-form curve motion.

  • PDF

Parametric NURBS Curve Interpolators: A Review

  • Mohan, Sekar;Kweon, Sung-Hwan;Lee, Dong-Mok;Yang, Seung-Han
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.84-92
    • /
    • 2008
  • Free-form shapes which were once considered as an aesthetic feature are now an important functional requirement. CNC industries are looking for a compact solution for reproducing free-form shapes as conventional interpolation models are inadequate, The parametric curve interpolator developed in the last decade has clearly emerged as favorite among its contemporaries in recent years, At present intense research has been done on parametric curve interpolators and interesting developments are reported. Out of the various parametric representations for curves and surfaces, NURBS has been standardized and widely used in free-form shape design. This paper presents a review of various methods of parametric interpolation for NURBS and discusses the salient features, problems and solutions. Recent approaches on variable feedrate interpolation, parameter compensation are also reviewed and research trends are addressed finally.

A Multi-Axis Contour Error Controller for High-Speed/High-Precision Machining of Free form Curves (고속 고정밀의 자유곡선 가공을 위한 다축 윤곽오차 제어)

  • 이명훈;최정희;이영문;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.64-71
    • /
    • 2004
  • The growing need for higher precision and productivity in manufacturing industry has lead to an increased interest in computer numerical control (CNC) systems. It is well known fact that the cross-coupling controller (CCC) is an effective method for contouring applications. In this paper, a multi-axis contour error controller (CEC) based on a contour error vector using parametric curve interpolator is introduced. The contour error vector is a vector from the actual tool position to the nearest point on the desired path. The contour error vector is the closest error model to the contour error. The simulation results show that the CEC is more accurate than the conventional CCC for a biaxial motion system. In addition, the experimental results on 3-axis motion system show that the CEC is simply applied to 3-axis motions and contouring accuracy is significantly improved.

Simulation Study for the Application of NURBS Interpolator (CNC공작기계에 NURBS 보간 알고리즘 적용을 위한 시뮬레이션 분석)

  • 김태훈;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.979-982
    • /
    • 2001
  • In CNC machining, demands on precision machining of free formed surface model are increasing. Most of the CAD/CAM systems provide the NURBS(Non-Uniform Rational B-Spline) interpolator. NURBS is defined with NURBS parameter by control point, weight value and knot value. This paper shows the realtime NURBS interpolation algorithms and compared with each other. One is based on the equal length of curve segments rather than equal increment of the parameter Δu. The other is to limit the interpolation error to any desired level by adjusting the feedrate considering the curvature of the shape and sampling time.

  • PDF

Adaptive feedrate interpolator for NURBS curve (NURBS 가공을 위한 적응이송속도 보간기)

  • 마르첸코티혼;백대균;고태조;김희술
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.94-99
    • /
    • 2002
  • Increasing demands on precision machining of 3D free-form surface have necessitated the tool smoothly varying feedrates. This paper presents on of algorithm for adaptive feedrate on NURBS curve. Since the algorithm for calculating variable feedrate depends on the curvature of curve, it permits to get constant material tool can be protected un terms of tool chipping vibration, etc.

  • PDF

Simultaneous 3D Machining with Real-Time NURBS Interpolation

  • Hong, Won-Pyo;Lee, Seok-Woo;Park, Hon-Zong;Yang, Min-Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.336-342
    • /
    • 2003
  • Increasing demand on precision machining using computerized numerical control (CNC) machines have necessitated that the tool move not only with the smallest possible position error but also with smoothly varying feedrates in 3-dimensional (3D) space. This paper presents the simultaneous 3D machining process investigated using a retrofitted PC-NC milling machine. To achieve the simultaneous 3-axis motions, a new precision interpolation algorithm for 3D Non Uniform Rational B-Spline (NURBS) curve is proposed. With this accurate and efficient algorithm for the generation of complex 3D shapes, a real-time NURBS interpolator was developed using a PC and the simultaneous 3D machining was accomplished satisfactorily.

NURBS Interpolation Algorithm for CNC Machines (CNC 공작기계의 NURBS 보간 알고리즘에 관한 연구)

  • Hong, Won-Pyo;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.115-120
    • /
    • 2000
  • Increasing demands on precision machining of free-form surface have necessitated that the tool to move not only position error as small as possible, but also with smoothly varying feedrates. This paper presents new algorithm for high precision 3D(3-dimensional) NURBS(Non-Uniform Rational B-Spline) interpolation in the reference-pulse technique. Based o the minimum path error strategy, interpolation algorithm was designed to follow the NURBS curve. Using this algorithm a real-time 3D NURBS interpolator was developed in software. The algorithm implemented in a PC showed promising results in interpolation error and speed performance. It is expected that this can be applied to the CNC systems for the high precision machining of complex shapes.

  • PDF

Simultaneous 3D Machining with Real-Time NURBS Interpolation (실시간 NURBS 보간에 의한 동시 3차원 가공에 관한 연구)

  • Hong, Won-Pyo;Yang, Min-Yang;Lee, Eung-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.89-94
    • /
    • 2002
  • Increasing demands on precision machining using CNC machines have necessitated that the tool to move with a position error as small as possible in 3-dimensional (3D) space. This paper presents the simultaneous 3D machining with a retrofitted PC-NC milling machine. To achieve the simultaneous 3-axis motions, a new precision interpolation algorithm for 3D Non-Uniform Rational B-Spline(NURBS) curve is used. With this accurate and efficient algorithm for the generation of complex. 3D shapes, a real-time NURBS interpolator was developed using a PC and the simultaneous 3D machining is accomplished.