• Title/Summary/Keyword: Curvatured Plate

Search Result 3, Processing Time 0.023 seconds

Free Vibration Analysis of a Curvatured Plate Welded to a Clamped-Free Circular Cylindrical Shell (곡률 원판이 결합된 외팔 원통 쉘의 고유진동 해석)

  • Yim, J.S.;Sohn, D.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.529-534
    • /
    • 2002
  • The receptance method was applied for the analysis of a cylindrical shell with a curvaturated plate attached at the top of the shell. The boundary conditions of the shell considered here were clamped at the bottom and free at the top of the shell. Before the analysis of the shell/plate combined structure, the natural frequencies of the plate and the shell were calculated separately and then they were used in the calculation of the frequencies of the combined structure by the receptance method. The frequency equation of the combined structure was derived from the continuity condition at the junction of the shell and the plate. The frequencies for various curvature factors of the plate were presented and compared with those from ANSYS to show its validity of the present method.

  • PDF

Dose Characteristics of Total-Skin Electron-Beam Irradiation with Six-Dual Electron Fields (Six-Dual 전자선 조사면에 의한 전신 피부 조사의 선량 특성)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • Purpose : To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated Materials and Method : The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of target-skin distance (TSD) and full collimator size (35*35 $cm^2$ on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cm * 105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. Results : The full width at half maximum(FWHM) of dose profile was 130 cm in large field of 105*105 $cm^2$ The width of $100\pm10\%$ of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose unifomity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80$\%$ depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. Conclusion : The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within$\pm10\%$ difference except the protruding area of skin which needs a shield and deeply curvatured region of skin which needs boosting dose.

  • PDF

Dose Effect of Tissue Compensator for 6 MV X-Ray (두경부 방사선조사시 3차원조직보상체에 의한 피부선량)

  • Lee, Ho-Jun;Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.10 no.2
    • /
    • pp.147-153
    • /
    • 1992
  • It is ideal thing to compensate tissue deficit without skin contamination in curvatured irradiation field of high energy photon beam. The 3-dimensional compensating technique utilizing tissue equivalent materials to ensure an adequate dose distribution and skin sparing effect was described. This compensator was made of paraffin ($70\%$) and stearin wax ($30\%$) compound. The parameters for evaluation of the effect on skin dose in application of compensator were considered in the size of the field, the thickness of the compensator and the source-to-axis distance. The results are as follows; the skin doses were not changed even though application of the compensator, but depended on the field size and the source-to-axis distance, and the skin doses were only slightly changed within $1\%$ relative errors as increasing the thickness of the compensator in these experiments.

  • PDF