• Title/Summary/Keyword: Curvature Analysis

Search Result 1,154, Processing Time 0.026 seconds

AUTOMATIC SCALE DETECTION BASED ON DIFFERENCE OF CURVATURE

  • Kawamura, Kei;Ishii, Daisuke;Watanabe, Hiroshi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.482-486
    • /
    • 2009
  • Scale-invariant feature is an effective method for retrieving and classifying images. In this study, we analyze a scale-invariant planar curve features for developing 2D shapes. Scale-space filtering is used to determine contour structures on different scales. However, it is difficult to track significant points on different scales. In mathematics, curvature is considered to be fundamental feature of a planar curve. However, the curvature of a digitized planar curve depends on a scale. Therefore, automatic scale detection for curvature analysis is required for practical use. We propose a technique for achieving automatic scale detection based on difference of curvature. Once the curvature values are normalized with regard to the scale, we can calculate difference in the curvature values for different scales. Further, an appropriate scale and its position are detected simultaneously, thereby avoiding tracking problem. Appropriate scales and their positions can be detected with high accuracy. An advantage of the proposed method is that the detected significant points do not need to be located in the same contour. The validity of the proposed method is confirmed by experimental results.

  • PDF

Development of the Simplified Analysis Model for RC Structures Considering Plastic Behavior (소성거동을 고려한 RC 구조물의 간략화 해석모델에 관한 연구)

  • 정연주;유영찬
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.361-371
    • /
    • 2000
  • RC structure is the composite material system combined concrete and steel showing different plastic behavior. Especially, concrete shows very complex plastic behavior. Therefore, for plastic analysis of RC structures, we have to model carefully each plastic behavior of concrete and steel member. But, because of divergency as well as difficulties and dimensions of modelling, it takes a lot of time and labor or sometimes it is impossible to perform plastic analysis of RC structures. In this study, for simplified plastic analysis of RC structures, we propose material transformation method by homogeneous and isotropic material which have the same plastic property as RC. We generate homogeneous and isotropic material showing the same moment-curvature curves (bi-linear stress-strain relation) as RC members, using bi-linear moment-curvature relation by yielding moment, yielding curvature and ultimate moment, ultimate curvature of RC member. Finally, we prove compatibility in the study by comparing plastic analysis results for various analysis models using transformed material models and RC model.

  • PDF

Numerical sensitivity analysis for the reinforcement effect of a curvature of a tunnel floor on soft grounds (연약지반에 위치한 터널 바닥부 곡률의 보강효과에 대한 수치해석적 민감도 분석)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.61-76
    • /
    • 2021
  • As the number of existing road tunnels increases every year, collapse and floor heaving accidents occur frequently during construction. The collapse among tunnel accidents dominates, so that studies related to the floor heaving are relatively insufficient. Accordingly, many studies to reinforce the lower part of the tunnel have been conducted, but the analysis on the effect of the curvature of the tunnel floor is insufficient. Therefore, in this study, the effects of the upper analysis area height and the coefficient of lateral earth pressure of the tunnel located on a tuff deterioration zone with a large rock cover, as well as the floor curvature, were examined through sensitivity analysis. As a result of the analysis, it turned out that the overall stability of the tunnel increases as the floor curvature increases, the coefficient of lateral earth pressure decreases, and the upper analysis region increases.

Relationship between Curvature Ductility and Displacement Ductility of RC Bridge Circular Columns (철근콘크리트 원형교각의 연성도 상관관계에 관한 연구)

  • 손혁수;조재원;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.111-116
    • /
    • 2002
  • The flexural ductility capacity of reinforced concrete columns can be expressed either in terms of curvature ductility or displacement ductility. To evaluate ductility capacity of reinforced concrete columns, analytical models and a non-linear analysis program, NARCC have been developed, which is applicable to the RC columns subjected to seismic loading. The analytical results by using computer program NARCC are in good agreement with the test results. In order to develop relationships between the curvature ductility and the displacement ductility, the analysis for total 21,600 RC circular columns using the computer program NARCC have been carried out for parametric studies. Based on the results from the parametric studies, a correlation equation between the curvature ductility and the displacement ductility was developed.

  • PDF

LOS Analysis Algorithm for Mid-range Guided Weapon System (중거리지대공 유도무기체계 적용을 위한 가시선 분석 알고리듬 연구)

  • Lee, Han-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.642-649
    • /
    • 2010
  • LOS analysis is used for optimal deployment of mid-range guided weapon system or system engagement effectiveness simulation. Comparing to real-world, LOS analysis includes error sources such as coarse terrain data resolution, refraction of radio waves, and several ideal assumptions. In this research, exact LOS algorithm under assumption of constant earth curvature and error analysis of that is investigated. It proved that LOS algorithm under assumption of constant earth curvature has negligible error in mid-range guidance weapon system's scope.

Numerical Analysis of Detonation Wave Propagation Characteristics in Annular Channels (환형 관내의 데토네이션 파 전파 특성 해석)

  • Lee, Su-Han;Cho, Deok-Rae;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.66-73
    • /
    • 2008
  • Present study examines the detonation wave propagation characteristics in annular channels. Numerical approaches used in the previous studies were extended with marching windows technique. Parametric study has been carried out using a radius of curvature normalized by the channel width considered as unique geometric parameter. In the channels of small radius of curvature, detonation wave is unstable and the regular cell structure is not observed. There is a critical radius of curvature where cell structure can be sustained. The effect of curvature makes the pressure difference on inner and outer surfaces where the detonation wave is overdriven. The results converge to that of straight channel as the radius of curvature gets larger, as expected.

Modeling of Deviation Angle and Pressure Loss Due to Rotor Tip Leakage Flow Effects in Axial Turbines (축류터빈에서 끝간격 유동에 의한 편향각과 압력손실의 모형)

  • Yoon, Eui Soo;Park, Moo Ryong;Chung, Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1591-1602
    • /
    • 1998
  • Simple spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a flow analysis. Combining these new models with the previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.

Development of Prediction Model for Flexibly-reconfigurable Roll Forming based on Experimental Study (실험적 연구를 통한 비정형롤판재성형 예측 모델 개발)

  • Park, J.W.;Kil, M.G.;Yoon, J.S.;Kang, B.S.;Lee, K.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.341-347
    • /
    • 2017
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to produce multi-curvature surfaces by controlling strain distribution along longitudinal direction. Reconfigurable rollers could be arranged to implement a kind of punch die set. By utilizing these reconfigurable rollers, desired curved surface can be formed. In FRRF process, three-dimensional surface is formed from two-dimensional curve. Thus, it is difficult to predict the forming result. In this study, a regression analysis was suggested to construct a predictive model for a longitudinal curvature of FRRF process. To facilitate investigation, input parameters affecting the longitudinal curvature of FRRF were determined as maximum compression value, curvature radius in the transverse direction, and initial blank width. Three-factor three-level full factorial experimental design was utilized and 27 experiments using FRRF apparatus were performed to obtain sample data of the regression model. Regression analysis was carried out using experimental results as sample data. The model used for regression analysis was a quadratic nonlinear regression model. Determination factor and root mean square root error were calculated to confirm the conformity of this model. Through goodness of fit test, this regression predictive model was verified.

Moment-curvature hysteresis model of angle steel frame confined concrete columns

  • Rong, Chong;Tian, Wenkai;Shi, Qingxuan;Wang, Bin;Shah, Abid Ali
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • The angle steel frame confined concrete columns (ASFCs) are an emerging form of hybrid columns, which comprise an inner angle steel frame and a concrete column. The inner angle steel frame can provide axial bearing capacity and well confining effect for composite columns. This paper presents the experimental and theoretical studies on the seismic behaviour of ASFCs. The experimental study of the 6 test specimens is presented, based on the previous study of the authors. The theoretical study includes two parts. One part establishes the section analysis model, and it uses to analyze section axial force-moment-curvature. Another part establishes the section moment-curvature hysteresis model. The test and analysis results show that the axial compression ratio and the assembling of steel slabs influence the local buckling of the angle steel. The three factors (axial compression ratio, content of angle steel and confining effect) have important effects on the seismic behaviour of ASFCs. And the theoretical model can provide reasonably accurate predictions and apply in section analysis of ASFCs.