• 제목/요약/키워드: Current-balancing

검색결과 273건 처리시간 0.025초

Neutral-Point-Clamped 인버터의 저 변조지수에서 DC 링크 전압 균형을 위한 간단한 컨트롤 기법 (A Simple Control Strategy for Balancing the DC-link Voltage of Neutral-Point-Clamped Inverters at low modulation index)

  • 마창수;김태진;강대욱;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.560-564
    • /
    • 2003
  • This paper proposes a simple control strategy based on the discontinuous PWM(DPWM) to balance the DC-link voltage of three-level Neutral-Point-Clamped(WPC) inverters at low modulation index. New DPWM methods in multi-level inverter are also introduced. The proposed DPWM method changes the path and duration to flow the neutral point current out of or into neutral point of the DC-link and it makes the overall fluctuation of the DC-link voltage zero during a sampling time of reference voltage vector. Therefore, the voltage of the DC-link can be balanced fairly well and also the voltage ripple of the DC-link is reduced significantly. Moreover, comparing with conventional methods, the proposed strategy is very simple. The validity of the proposed DPWM method is verified by experiment

  • PDF

A Hybrid CBPWM Scheme for Single-Phase Three-Level Converters

  • Wang, Shunliang;Song, Wensheng;Feng, Xiaoyun;Ding, Rongjun
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.480-489
    • /
    • 2016
  • A novel hybrid carrier-based pulse width modulation (CBPWM) scheme that combines unipolar and dipolar modulations is proposed for single-phase three-level rectifiers, which are widely applied in railway traction drive systems. The proposed CBPWM method can satisfy the volt-second balancing principle in the complete modulation index region through overmodulation compensation. The modulation scheme features two modulation modes: unipolar and dipolar. The operation range limits of these modulation modes can be modified by changing the separation coefficient. In comparison with the traditional unipolar CBPWM, the proposed hybrid CBPWM scheme can provide advantageous features, such as lower high-order harmonic distortion of the line current and better utilization of switching frequency. The separation coefficient value is optimized to achieve the maximum utilization of these advantages. The experimental results verify the feasibility and effectiveness of the proposed hybrid CBPWM scheme.

A New Single Phase Multilevel Inverter Topology with Two-step Voltage Boosting Capability

  • Roy, Tapas;Sadhu, Pradip Kumar;Dasgupta, Abhijit
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1173-1185
    • /
    • 2017
  • In this paper, a new single phase multilevel inverter topology with a single DC source is presented. The proposed topology is developed based on the concepts of the L-Z source inverter and the switched capacitor multilevel inverter. The input voltage to the proposed inverter is boosted by two steps: the first step by an impedance network and the second step by switched capacitor units. Compared to other existing topologies, the presented topology can produce a higher boosted multilevel output voltage while using a smaller number of components. In addition, it provides more flexibility to control boosting factor, size, cost and complexity of the inverter. The proposed inverter possesses all the advantages of the L-Z source inverter and the switched capacitor multilevel inverter like controlling the start-up inrush current and capacitor voltage balancing using a simple switching strategy. The operating principle and general expression for the different parameters of the proposed topology are presented in detail. A phase disposition pulse width modulation strategy has been developed to switch the inverter. The effectiveness of the topology is verified by extensive simulation and experimental studies on a 7-level inverter structure.

공공연구기관의 기술라이센싱 모형 연구 : 방법론과 함의를 중심으로

  • 박종복;류태규;이정동;김태유
    • 기술혁신연구
    • /
    • 제10권2호
    • /
    • pp.19-44
    • /
    • 2002
  • All over the world, the attention on the exploitation of public research, which is mainly implemented by technology transfer, has increased in recent years. Licensing, which is one of representative mechanisms for public-to-private technology transfer, is accompanied by the frequent conflicts in negotiating a license payment between public research institutes (PRIs) and private firms. In spite of the body of literature on technology transfer in a licensing context, it focuses on contracts between private firms. Even the existing literature, which addresses public-to-private technology transfer through licensing, to our knowledge, has not yet formalized an established licensing model. This paper develops a mathematical model of public-to-private licensing, not hitherto tried by academics. The model addresses important issues to be applied comprehensively in licensing practice, such as determining a royalty rate, balancing between an initial payment and a running royalty, designing an inventor's incentive system, and setting a minimum payment as a screening criterion. The paper also provides reasonable management implications to controversial issues in technology transfer from PRIs to private firms, partly employing the comparative analysis between current stylized licensing practice and the one suggested in the model. We hope that study contributes to providing the foundation on which the theory on public-to-private licensing would extend to an in-depth level.

  • PDF

의학교육 평가인증의 국제적 동향 (Current Trend of Accreditation within Medical Education)

  • 안덕선
    • 의학교육논단
    • /
    • 제22권1호
    • /
    • pp.9-15
    • /
    • 2020
  • Currently, accreditation within medical education is a priority on the agenda for many countries worldwide. The World Federation for Medical Education's (WFME) launch of its first trilogy of standards in 2003 was a seminal event in promoting accreditation within basic medical education (BME) globally. Parallel to that, WFME also actively spearheaded a project to recognize the accrediting agencies within individual countries. The introduction of competency-based medical education (CBME) with the two key concepts of "entrusted professional activity" and milestones has enabled researchers to identify the relationship between patient outcomes and medical education. Recent data driven by CBME has been used for the continuous quality improvement of trainees and training programmes as well. The goal of accreditation has shifted from the single purpose of quality assurance to balancing quality assurance and quality improvement. Even though there are a plethora of types of postgraduate medical education (PGME), it may be possible to accredit resident programmes on a global scale by adopting the concept of CBME. In addition, the alignment of the accreditation for BME and PGME, which center on competency, will be achievable. This argument may extend the possibility of measuring the outcomes of the accreditation itself against patient outcomes as well. Therefore, evidence of the advantages of costly and labor-consuming accreditation processes will be available in the near future and quality improvement will be the driving force of the accreditation process.

The Performance Study of a Virtualized Multicore Web System

  • Lu, Chien-Te;Yeh, C.S. Eugene;Wang, Yung-Chung;Yang, Chu-Sing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5419-5436
    • /
    • 2016
  • Enhancing the performance of computing systems has been an important topic since the invention of computers. The leading-edge technologies of multicore and virtualization dramatically influence the development of current IT systems. We study performance attributes of response time (RT), throughput, efficiency, and scalability of a virtualized Web system running on a multicore server. We build virtual machines (VMs) for a Web application, and use distributed stress tests to measure RTs and throughputs under varied combinations of virtual cores (VCs) and VM instances. Their gains, efficiencies and scalabilities are also computed and compared. Our experimental and analytic results indicate: 1) A system can perform and scale much better by adopting multiple single-VC VMs than by single multiple-VC VM. 2) The system capacity gain is proportional to the number of VM instances run, but not proportional to the number of VCs allocated in a VM. 3) A system with more VMs or VCs has higher physical CPU utilization, but lower vCPU utilization. 4) The maximum throughput gain is less than VM or VC gain. 5) Per-core computing efficiency does not correlate to the quality of VCs or VMs employed. The outcomes can provide valuable guidelines for selecting instance types provided by public Cloud providers and load balancing planning for Web systems.

Optimization of Capacitance Balance for a Hybrid Supercapacitor Consisted of LiMn2O4/AC as a Positive and AC Negative Electrode

  • Cho, Min-Young;Park, Sun-Min;Lee, Jae-Won;Roh, Kwang-Chul
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.152-156
    • /
    • 2011
  • A hybrid supercapacitor is fabricated using a composite material from $LiMn_2O_4$ (LMO) and activated carbon (AC) as the positive electrode and AC as the negative electrode to form the (LMO + AC)/AC system. Volume ratio (positive : negative) of electrodes is controlled to investigate of the power and energy balance. The (LMO + AC)/AC system shows better performances than the LMO/AC system. Especially, electrochemical impedance spectra, rate charge.discharge and cycle performance testing show that the (LMO + AC)/AC system have an outstanding electrochemical performance at volume ratios of (LMO + AC)/AC = 1 : 1.7 and 1 : 2. Electric double layer capacitor (EDLC) capacitance between AC of the positive electrode and AC of the negative electrode improves power density without loss of capacitance. Stable capacitance is achieved by lowering the positive electrode resistance and balancing the energy and power densities between the positive and negative electrodes by the addition of AC to the positive electrode at high current density.

Scate: A Scalable Time and Energy Aware Actor Task Allocation Algorithm in Wireless Sensor and Actor Networks

  • Sharifi, Mohsen;Okhovvat, Morteza
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.330-340
    • /
    • 2012
  • In many applications of wireless sensor actor networks (WSANs) that often run in harsh environments, the reduction of completion times of tasks is highly desired. We present a new time-aware, energy-aware, and starvation-free algorithm called Scate for assigning tasks to actors while satisfying the scalability and distribution requirements of WSANs with semi-automated architecture. The proposed algorithm allows concurrent executions of any mix of small and large tasks and yet prevents probable starvation of tasks. To achieve this, it estimates the completion times of tasks on each available actor and then takes the remaining energies and the current workloads of these actors into account during task assignment to actors. The results of our experiments with a prototyped implementation of Scate show longer network lifetime, shorter makespan of resulting schedules, and more balanced loads on actors compared to when one of the three well-known task-scheduling algorithms, namely, the max-min, min-min, and opportunistic load balancing algorithms, is used.

A Non-isolated High Step-up DC/DC Converter with Low EMI and Voltage Stress for Renewable Energy Applications

  • Baharlou, Solmaz;Yazdani, Mohammad Rouhollah
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1187-1194
    • /
    • 2017
  • In this paper, a high step-up DC-DC PWM converter with continuous input current and low voltage stress is presented for renewable energy application. The proposed converter is composed of a boost converter integrated with an auxiliary step-up circuit. The auxiliary circuit uses an additional coupled inductor and a balancing capacitor with voltage doubler and switching capacitor technique to achieve high step-up voltage gain with an appropriate switch duty cycle. The switched capacitors are charged in parallel and discharged in series by the coupled inductor, stacking on the output capacitor. In the proposed converter, the voltage stress on the main switch is clamped, so a low voltage switch with low ON resistance can be used to reduce the conduction loss which results in the efficiency improvement. A detailed discussion on the operating principle and steady-state analyses are presented in the paper. To justify the theoretical analysis, experimental results of a 200W 40/400V prototype is presented. In addition, the conducted electromagnetic emissions are measured which shows a good EMC performance.

3상 전압형 PWM 컨버터 운전시 전원측 리액터의 불평형을 고려한 보상법 (A Compensation Method considering Unbalance of Reactor at Source Side in Driving 3 Phase Voltage type PWM Converter)

  • 전지용;이사용;조유환;이근홍
    • 전력전자학회논문지
    • /
    • 제10권4호
    • /
    • pp.373-379
    • /
    • 2005
  • 본 논문에서는 인버터를 구동하는 용도의 직류전원장치에 대한 제어 알고리즘 개발을 목표로 하고 있으며, 구동과 회생기능을 갖는 전압형 PWM 컨버터에서 운전시 전원의 불평형을 보상하는 제어방법을 제안한다. 교류전원에 대하여 컨버터가 항상 평형상태를 유지하는 방법은 전류제어 루프에 의하여 불평형 상태를 보상하는 방법을 사용하였으며, 불평형의 제어는 전력변환기의 구성면에 있어서 각상의 리액턴스가 같지 않은 누설변압기 등의 사용을 가능하게 하므로 제안된 전력변환기의 하드웨어와 제어 알고리즘은 장치의 소형화와 효율향상에 기여할 것이다.